A hydrolytically stable europium-organic framework for the selective detection of radioactive $\mathbf{T h}^{\mathbf{4 +}}$ in aqueous solution

Liping Song, ${ }^{\text {sa,b }}$ Wei Liu, ${ }^{\text {§b }}$ Yanlong Wang, ${ }^{\text {b }}$ Lanhua Chen, ${ }^{\text {b }}$ Xiao-Feng Wang*a and Shuao Wang* ${ }^{*}$

${ }^{\text {a School of Chemistry and Chemical Engineering, and Hunan Province Engineering }}$ Research Center of Radioactive Control Technology in Uranium Mining and Metallurgy, University of South China, Hengyang, 421001, China.
${ }^{\mathrm{b}}$ School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren’ai Road, Suzhou 215123, China.

Contents

S1. Crystallographic data

S2. Stability test

S3. The TGA curve for Compound 1

S4. The excitation spectra of Compound 1

S5. Influence of competing metal ions

S6. The influence of the pH value on the luminescence intensity of compound 1

S7. Emission spectra of deionized water

S8. The linear relationship the relative decrease of luminescence intensity and thorium concentration of Compound 1 in low concentration

S9. Adsorption ratio of $\mathbf{T h}^{\mathbf{4 +}}$ in $2.15 \times \mathbf{1 0}^{-5} \mathbf{~ m o l} / \mathrm{L}$ competing metal ions.

S1. Crystallographic data of Compound 1

Table S1. Crystallographic data and structural refinement for compound 1

Sample	Compound 1
Formula	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{18} \mathrm{~N}_{2} \mathrm{Eu}_{2}$
$\mathrm{Mr}\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]$	958.43
Crystal system	triclinic
Space group	P-1
$a(\AA)$	9.1075(8)
b (\AA)	11.8822(11)
$c(\AA)$	15.5502(14)
α	80.532(3)
β	74.179(3)
γ	74.763(3)
$V\left(\AA^{3}\right)$	1554.3(2)
Z	2
$D_{c}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	2.048
$\mu\left(\mathrm{mm}^{-1}\right)$	4.084
$F(000)$	932.0
T (K)	296
GOF on F^{2}	1.054
$R_{1},{ }^{\text {a }}{ }{ }^{\text {R }} \mathrm{R}_{2}{ }^{\mathrm{b}}(I>2 \sigma(I))$	0.0282, 0.0712
$R_{1},{ }^{\text {a }} w \mathrm{R}_{2}{ }^{\mathrm{b}}$ (all data)	0.0311, 0.0729

Table S2. Selected bond lengths (\AA)

Selected Bond Lengths (\AA)	
Eu1-O4	$2.381(3)$
Eu1-O6	$2.301(3)$
Eu1-O7	$2.309(3)$
Eu1-O8	$2.449(3)$
Eu1-O11	$2.390(2)$
Eu1-O13	$2.337(2)$
Eu1-O15	$2.375(2)$
Eu2-O5	$2.346(3)$
Eu2-O9	$2.365(2)$
Eu2-O10A	$2.806(3)$
Eu2-O12	$2.303(2)$
Eu2-O14	$2.454(3)$
Eu2-O16	$2.349(2)$
Eu2-O17	$2.386(2)$

S2. Stability test

Figure S1. a) The stability of Compound 1 in deionized water, $\mathrm{pH}=2$, and 12 aqueous solutions. b) The stability of Compound 1 in cation and anion solutions.

S3. The TGA curve for Compound 1

Figure S2. The TGA curve of Compound 1 measured from $30^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$.

S4. The excitation spectrum of Compound 1

Figure S3. The excitation spectrum of Compound 1.

S5. Influence of competing ions

Figure S4. Emission spectra of compound 1 immersed in different cation and anion solutions.

Figure S5. Luminescence intensity of compound 1 immersed in $1 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ various ion solutions. (monitored at 616 nm , and excited at 290 nm)

S6. The influence of the $\mathbf{p H}$ value on the luminescence intensity of compound 1

Figure S6. The influence of the $\mathbf{p H}$ value on the luminescence intensity of compound 1 (monitored at 616 nm).

S7. Emission spectra of deionized water

Figure S7. Emission spectra of deionized water (excited at 290 nm).

S8. The linear relationship the relative decrease of luminescence intensity and

 thorium concentration of compound 1 in low concentration

Figure S8. A plot showing the relative decrease of luminescence intensity (measured at 616 nm) of compound 1, the data points in low concentration ($0-2.16 \times 10^{-4} \mathrm{~mol}$ $/ L)$ are fitted in linear relationship $\left(R^{2}=0.85\right)$.

S9. Adsorption ratio of $\mathbf{T h}^{4+}$ in $2.15 \times 10^{-5} \mathbf{~ m o l} / \mathrm{L}$ competing metal ions.

Figure S9. Adsorption ratio of Th^{4+} in $2.15 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$ competing metal ions.

Table S3. Quenching constants $\left(\mathrm{K}_{S V}\right)$ of various $1 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \mathrm{M}\left(\mathrm{NO}_{3}\right)_{\mathrm{x}} \cdot \mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{M}$ $\left.=\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Co}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Mg}^{2+}, \mathrm{La}^{3+}, \mathrm{Lu}^{3+}, \mathrm{Th}^{4+} ; \mathrm{x}=1,2,3,4\right)$ solution, and $\mathrm{Na}_{\mathrm{m}}(\mathrm{X}) \cdot \mathrm{y}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot\left(\mathrm{X}=\mathrm{BO}_{2}{ }^{-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{Cl}^{-}, \mathrm{F}^{-} ; \mathrm{m}=1,2,3\right)$.

Sample	Blank	K^{+}	Na^{+}	Ba^{2+}	Sr^{2+}	Cd^{2+}
$\mathrm{K}_{\text {SV }}$	0	124.90	197.81	150.36	156.91	88.75
Sample	Zn^{2+}	Mg^{2+}	La^{3+}	Lu^{3+}	Th^{3+}	BO_{2}^{-}
$\mathrm{K}_{\text {SV }}$	119.59	110.85	391.01	418.74	6.68×10^{4}	-298.67
Sample	Ca^{2+}	$\mathrm{PO}_{4}{ }^{3-}$	$\mathrm{SO}_{4}{ }^{2-}$	Cl^{-}	F^{-}	Co^{2+}
$\mathrm{K}_{\text {SV }}$	0.08	-0.13	41.73	-32.63	61.94	351.38

