Supplementary Information

(a)

Minor modifications afford improved host selectivities in xanthenyl-type host systems

Benita Barton,*1 Lize de Jager,*2 and Eric C. Hosten

Department of Chemistry, PO Box 77000, Nelson Mandela University, Port Elizabeth, 6031, South Africa. E-mail: <u>benita.barton@mandela.ac.za;*1</u> <u>s213337665@mandela.ac.za*2</u>

"X ED (H) o-xylene (G)" 1 1 C:\Bruker\TopSpin3.2\data\Organic\Lize\M PROTON CDC13 {C:\Bruker\TopSpin3.2\data\Organic\Lize\Masters} nmrsu 12 [*1e6] 4267 4080 3112 2918 2575 29181 29191 1998 1470 0665 0465 0465 0286 2.3185 2 CH2 2NH 26 Ar H's 26.0 10 2 6 0 G[ppm] Settin (b) "X ED (H) Cl3 clean 12.06.17" 1 1 C:\Bruker\TopSpin3.2\data\Organic\Lize\Masters Cl3 {C:\Bruker\TopSpin3.2\data\Organic\Lize\Masters} nmr 13 [*1e6] 151.3062 149.8848 129.0256 128.1834 128.0281 127.2171 126.5185 125.7399 123.2862 59.9310 -43.4284 77.3567 .09 20 40 Quaternary C's Aromatic C's 8 CH2 ethylenediamine Ph-C-NH 50 9

100

50

[ppm]

150

(d)

(c)

.

Figure S1. Characterization spectra for (a) ¹H-NMR spectrum for H₂, (b) ¹³C-NMR spectrum for H₂, (c) IR spectrum for H₂, (d) ¹H-NMR spectrum for H₁, (e) ¹³C-NMR spectrum for H₁ and (f) IR spectrum for H₁.

2.8

OGc o**[ppm]**r

00.6

Figure S2. Individual inclusion spectra for (a) ¹H-NMR for ANI with H₁, (b) ¹H-NMR for 3MANI with H₁, (c) ¹H-NMR for 4MANI with H₁, (d) ¹H-NMR for *p*-Xy with H₂, (e) ¹H-NMR for ANI with H₂ and (f) ¹H-NMR for 4MANI with H₂.

Table S3. (a) Duplicate data for equimolar competition experiments of anisole and methylanisole isomers with H1

Combination:	Batch 1	Batch 2	Average	e.s.d.'s
ANI 2MANI	98.29:1.71	94.09:5.91	96.19:3.54	(2.10): (2.10)
ANI 3MANI	54.40: 45.60	57.88:42.12	56.14:43.86	(1.74): (1.74)
ANI 4MANI	35.59:64.42	36.04:63.97	35.82:64.20	(0.23): (0.23)
23 MANI	11.58:88.42	14.91:85.09	13.25:86.76	(1.67): (1.67)
34 MANI	40.14:59.86	40.56:59.44	40.35:59.65	(0.21): (0.21)
24 MANI	3.75:96.25	4.18:95.82	3.79:96.04	(0.22): (0.22)
ANI 23MANI	35.10:8.12:56.78	38.56:7.89:53.55	36.83:8.01:55.17	(1.73): (0.12): (1.62)
ANI 34MANI	27.36:32.73:39.91	29.54:29.97:40.49	28.45:31.38:40.20	(1.09): (1.41): (0.29)
ANI 24MANI	36.31:4.51:59.18	35.69:3.03:61.28	36.00:3.77:60.23	(0.31): (0.74): (1.05)
234 MANI	4.50:40.89:54.60	3.12:43.39:53.46	3.18:42.14:54.03	(0.69): (1.25): (0.57)
ANI 234MANI	31.06:2.88:19.59:46.47	27.02:3.04:24.10:45.85	29.04:2.96:21.85:46.16	(2.02): (0.08): (2.26): (0.31)

Table S3. (b) D ^r	uplicate data for equir	nolar competition experimer	nts of anisole and methyla	anisole isomers with ${f H_2}$

Combination:	Batch 1	Batch 2	Average	e.s.d.'s (%)
ANI 2MANI	97.47:2.54	95.07:4.93	96.27:3.73	(1.20): (1.20)
ANI 3MANI	91.80:8.20	89.91:10.09	90.86:9.14	(0.95): (0.95)
ANI 4MANI	14.54:85.46	14.08:85.92	14.31:85.69	(0.23): (0.23)
23 MANI	a	a	-	-
34 MANI	6.55:93.45	6.20:93.80	6.37:93.63	(0.18): (0.18)
24 MANI	3.88:96.12	3.50:96.50	3.69:96.31	(0.19): (0.19)
ANI 23MANI	а	a	-	-
ANI 34MANI	11.25:4.77:83.98	9.81:4.17:86.02	10.53:4.47:85.00	(0.72): (0.30): (1.02)
ANI 24MANI	10.11:1.76:88.13	11.73:2.36:85.91	10.92:2.06:87.02	(0.81): (0.30): (1.11)
234 MANI	1.25:3.95:94.80	2.17:5.65:92.18	1.71:4.80:93.49	(0.46): (0.85): (1.31)
ANI 234MANI	11.58:1.15:5.28:81.99	11.09:1.76:3.89:83.26	11.34:1.46:4.59:82.63	(0.25): (0.31): (0.70): (0.64)

^aDid not crystallize

Table S3. (c) Duplicate data for equimolar competition experiments of ethylbenzene and xylene isomers with H₂

Combination:	Batch 1	Batch 2	Average	e.s.d.'s
<i>p,o</i> –xylene	96.66:3.34	96.79:3.21	96.73:3.27	(0.07): (0.07)
<i>p,m</i> –xylene	96.09:3.91	96.39:3.61	96.24:3.76	(0.15): (0.15)
<i>m,o</i> –xylene	a	а	-	-
<i>p,m,o</i> –xylene	96.85:1.60:1.55	96.12:2.16:1.72	96.49: 1.88: 1.63	(0.37): (0.28): (0.09)
<i>p</i> –xyl and EB	91.94:8.06	92.63:7.37	92.29:7.71	(0.35): (0.35)
<i>o</i> −xyl and EB	a	a	-	-
<i>m</i> –xyl and EB	a	a	-	-
<i>p,o</i> –xyl and EB	92.77:1.89:5.35	92.75:2.18:5.08	92.76: 2.04:5.22	(0.01): (0.15): (0.14)
<i>p,m</i> –xyl and EB	90.94:2.85:6.22	92.02:1.97:6.01	91.48:2.41:6.12	(0.54): (0.44): (0.11)
o,m–xyl and EB	a	a	-	-
<i>p,m,o</i> -xyl and EB	91.42:1.51:1.86:5.21	92.61:1.04:1.11:5.25	92.02:1.28:1.49:5.23	(0.60): (0.24): (0.38): (0.02)
and the state of t	1			

^aNo inclusion occurred

Figure S4 Chromatograph of standards for guests (a) anisoles and methylanisole isomers and (b) ethylbenzene and xylene isomers.

Table S5. (a) All interactions	for H ₁ with	anisole and	methylanisole	isomers
--------------------------------	-------------------------	-------------	---------------	---------

Non-covalent interaction	H ₁ •ANI	H₁•3MANI	H₁•4MANI	Symmetry
π…π (H…H and H…G) H…G major H…G minor	4.641(1)–5.989(1) Å [7] 4.909(1) –5.986(1) Å ^a	4.527(9)–5.9691(9) Å [7] 5.028(1)–5.757(1) Å	4.571(1)–5.998(1) Å [6] 4.964(2)–5.535(2) Å [7] 5.220(2)–5.869(2) Å	
CH…π (host–host and host–guest)				
$C_{(H)} - H_{(H)} \cdots Cg_{(H)}$ $C_{(G)} - H_{(G)} \cdots Cg_{(H)}$ $C_{(G)} - H_{(G)} \cdots Cg_{(H)}$	2.85 Å, 144°	2.78 Å, 170°	2.74 Å. 134°	x, y, 1+z 1-x, 2-y,1- z -1+x, y, z
H-bonding	Non-classical	Non-classical	Non-classical	
(intramolecular) C _(H) —H _(H) …N _(H) C _(H) —H _(H) …N _(H)	2.62(2) Å, 103° 3.443(2) Å, 158°	2.910(2) Å, 102°	2.756(2) Å, 103° 3.456(2) Å, 155°	х, ү, z х, у, z
$C_{(H)} - H_{(H)} \cdots N_{(H)}$ $C_{(H)} - H_{(H)} \cdots N_{(H)}$ $C_{(H)} - H_{(H)} \cdots N_{(H)}$	2.07(2) Å, 102° 3.455(2) Å, 151°	2.763(2) Å, 103° 3.456(2) Å, 153° 3.422(2) Å, 151°	2.914(2) Å, 102° 3.437(2) Å, 148°	х, у, z х, у, z х, у, z
$C_{(H)} - H_{(H)} \cdots N_{(H)}$ $C_{(H)} - H_{(H)} \cdots N_{(H)}$	2.768(2) Å, 103° 2.898(2) Å, 102°	2.772(2) Å, 103° 2.921(2) Å, 101°	2.766(2) Å, 103° 2.902(2) Å, 101°	x, y, z x, y, z x, y, z
$C_{(H)} - H_{(H)} \cdots O_{(G)}$ $C_{(H)} - H_{(H)} \cdots O_{(G)} - C_{(G)}$ $N_{(H)} - H_{(H)} \cdots C_{(H)} - C_{(H)}$	2.70Å, 127°(<) 2.83Å. 158°(<)		2.55 Å, 132°	1-x, -y, -z 1-x, 1-y, 1-z -x. 1-y. 1-z
Short contacts (host/ guest and guest/guest) ^{,b}				
$\begin{array}{c} C_{62} - H_{62} \cdots C_{75} - C_{74} \\ C_{72} - H_{72} \cdots C_{52} - C_{53} \end{array}$	2.87Å, 141°(<) 2.86Å, 143°(<)			x, y, 1+z -x, 1-y, 1-z
$\begin{array}{l} C_{(H)} - H_{(H)} \cdots S_{(H)} - C_{(H)} \\ C_{(H)} - H_{(H)} \cdots H_{(H)} - C_{(H)} \\ C_{(H)} - H_{(H)} \cdots H_{(G)} - C_{(G)} \\ C_{(H)} - H_{(H)} \cdots H_{(G)} - C_{(G)} \\ C_{(H)} - H_{(H)} \cdots H_{(G)} - C_{(G)} \end{array}$		2.95 Å, 146° (<) 2.35 Å, 128° (<) 2.36 Å, 143° (<) 2.94 Å, 130° (<) 2.37 Å, 158° (<)		1-x, 2-y, 1-z 1-x, 1-y, 1-z 1-x, 2-y, 1-z x, 1+y, z 2-x, 2-y, 1-z
$\begin{array}{l} C_{(H)} - H_{(H)} \cdots H_{(H)} - C_{(H)} \\ C_{(H)} - H_{(H)} \cdots H_{(G)} - C_{(G)} \\ C_{(G)} - H_{(G)} \cdots H_{(H)} - C_{(H)} \\ C_{(G)} - H_{(G)} \cdots H_{(H)} - C_{(H)} \end{array}$			2.38 Å, 127° (<) 2.27 Å, 158° (<) 2.26 Å, 141° (<) 2.25 Å, 141° (<)	2-x, 1-y, -z 2-x, -y, -z 1-x, 1-y, 1-z 1-x, -y, 1-z

^aNumber pf H…G interactions are indicated in parentheses. ^bDistances denoted by < are contacts that measure less than the sum of the van der Waals radii of the atoms involved while those denoted by << is this sum minus 0.2 Å.

Table S5. (b) All interactions for $H_2 \, \mbox{with}$ anisole and methylanisole isomers

Non-covalent interaction	H₂•ANI	H ₂ •4MANI	Symmetry
π···π (H···H and H···G)	4.080(1) – 5.920(1) Å	4.0427(7) – 5.756(3) Å	
H…G interactions	[5] 4.725(1)–5.920(1) Å	[H···H only]	
CH…π (host–host)			
C _(H) -H _(H) Cg _(H)	2.94 Å, 76°		x, γ, z
С(н)-Н(н)…Сg(н)	2.57 Å, 97°		x, y, z
С(н)-Н(н)…Сg(н)	2.92 Å, 128°		x, 1+y, z
С(н)-Н(н)…Сg(н)	2.63 Å, 162°		2-x, 2-y, 2-z
С(н)-Н(н)…Сg(н)	2.81 Å, 105°		x, y, z
С _(H) -H _(H) …Cg _(H)	2.92 Å, 128°		1-x, 1-y, 1-z
$C_{(G)}$ - $H_{(G)}$ ···C $g_{(H)}$	2.90 Å, 137°		x, y, z
$C_{(H)} - H_{(H)} \cdots Cg_{(H)}$		2.61 Å, 99°	x, y, z
C _(H) -H _(H) ····Cg _(H)		2.83 Å, 132°	1+x, y, z
C _(H) -H _(H) Cg _(H)		2.90 Å, 133°	1-x, -y,1-z
C _(H) -H _(H) Cg _(H)		2.75 Å, 105°	x, y, z
С _(H) -H _(H) …Cg _(H)		2.69 Å, 155°	1-x, -y, -z
$C_{(G)}-H_{(G)}\cdots Cg_{(H)}$		2.78 Å, 135°	−1+x, −1+y, z
H–bonding (intramolecular)	Non-classical	Non-classical	
$C_{(H)} - H_{(H)} \cdots N_{(H)}$	2.805(3) Å, 102°		х, у, z
$N_{(H)} - H_{(H)} \cdots C_{(G)} - C_{(G)}$		2.63 Å, 156° (<<)	1-x, -y, 1-z
$N_{(H)}-H_{(H)}\cdots C_{(G)}-C_{(G)}$		2.37 Å, 160° (<)	1+x, y, z
$C_{(H)} - H_{(H)} \cdots O_{(H)} - C_{(H)}$	2.64Å, 164°(<)		1+x, 1+y, z
C _(H) -H _(H) O _(H) -C _(H)		2.63 Å, 155° (<)	-1+x, -1+y, z
Short contacts (host			
guest and guest…guest) ^{a,b}			
$C_{(H)} - H_{(H)} \cdots H_{(G)} - C_{(G)}$		2.30 Å, 127° (<)	1+x, 1+y, z

^aDistances denoted by < are contacts that measure less than the sum of the van der Waals radii of the atoms involved while those denoted by << is this sum minus 0.2 Å.

Table S5. (c) All interactions for H_2 with ethylbenzene and xylene isomers

Non-covalent interaction	Н₂• <i>р</i> -Ху	Symmetry
π – π (H···H and H···G)	4.074(1) – 5.926(1) Å	
	5H–G 4.781(1)–5.926(1) Å	
CH…π (host-host)		
C _(H) –H _(H) …Cg _(H)	3.00 Å, 127°	Χ, Υ, Ζ
$C_{(G)} - H_{(G)} \cdots Cg_{(H)}$	2.76 Å, 145°	x, 1+y, z
H-bonding	Non-classical	
N _(H) -H _(H) C _(G) -C _(G)	2.77 Å, 159° (<)	1-х, 2-у, 1-z
Short contacts (host…		
guest and guest…guest) ^{a,b}		
$C_{(H)} - H_{(H)} - H_{(G)} - C_{(G)}$	2.33 Å, 130° (<)	x, -1+y, z
$C_{(G)}-H_{(G)}\cdots C_{(H)}-C_{(H)}$	2.87 Å, 139° (<)	х, у, z

^aDistances denoted by < are contacts that measure less than the sum of the van der Waals radii of the atoms involved while those denoted by << is this sum minus 0.2 Å.

Summary of H····H interactions of inclusion compounds

Interaction	H₂ ● <i>ρ</i> -Xγ		
	#	Range	
π…π	-	4.047(1)–5.926(1) Å	
СН…л	3	2.51–2.80 Å, 102–163°	
Non-classical	2	2.811(2)–3.486(2) Å, 102–165°	
H-bonding			
Other short contacts	1	2.56 Å, 165°	

(b)

(e)

(d)

(g)

Figure S6. Host geometry within the respective complexes (a) $H_1 \bullet p$ -Xy, (b) $H_1 \bullet o$ -Xy, (c) $H_1 \bullet EB$, (d) $H_1 \bullet ANI$, (e) $H_1 \bullet 3MANI$, (f) $H_1 \bullet 4MANI$, (g) $H_2 \bullet p$ -Xy, (h) $H_2 \bullet ANI$ and (i) $H_2 \bullet 4MANI$.

(c)

(f)