Electronic Supplementary Information (ESI)

A Zn(II) metal-organic framework constructed by a mixed-ligand strategy for CO₂ capture and gas separation

Lifei Zou,^{a,b} Jiaqi Yuan,^a Yang Yuan,^a Jiaming Gu,^a Guanghua Li,^a

Lirong Zhang^{a,*} and Yunling Liu^{a,*}

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

^bInner Mongolia Key Laboratory of Photoelectric Functional Materials, College of Chemistry and Chemical Engineering, Chifeng University, Chifeng 024000, P. R. China

S1. Calculation procedures of selectivity from IAST

The measured experimental data is excess loadings (q^{ex}) of the pure components CO₂, CH₄ and C₂H₆ for compound **1**, which should be converted to absolute loadings (q) firstly.

$$q = q^{ex} + \frac{pV_{pore}}{ZRT}$$

Here Z is the compressibility factor. The Peng-Robinson equation was used to estimate the value of compressibility factor to obtain the absolute loading, while the measure pore volume $0.509 \text{ cm}^3 \text{ g}^{-1}$ is also necessary.

The dual-site Langmuir-Freundlich equation is used for fitting the isotherm data at 298 K.

$$q = q_{m_1} \times \frac{b_1 \times p^{1/n_1}}{1 + b_1 \times p^{1/n_1}} + q_{m_2} \times \frac{b_2 \times p^{1/n_2}}{1 + b_2 \times p^{1/n_2}}$$

Here p is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), q is the adsorbed amount per mass of adsorbent (mol kg⁻¹), q_{m1} and q_{m2} are the saturation capacities of sites 1 and 2 (mol kg-1), b_1 and b_2 are the affinity coefficients of sites 1 and 2 (1/kPa), n_1 and n_2 are the deviations from an ideal homogeneous surface.

The selectivity of preferential adsorption of component 1 over component 2 in a mixture containing 1 and 2, perhaps in the presence of other components too, can be formally defined as

$$S = \frac{q_1/q_2}{p_1/p_2}$$

 q_1 and q_2 are the absolute component loadings of the adsorbed phase in the mixture. These component loadings are also termed the uptake capacities. We calculate the values of q_1 and q_2 using the Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz.

S2. Supporting Figures

Fig. S1 (a) Two types of inorganic SBUs of compound **1** are alternatively connected to each other to form a 1D chain structure; (b) each 1D chain is further linked by ABTC⁴⁻ ligands to generate a 3D porous structure.

Fig. S2 Space-filling view of the structure of compound **1** showing multiple pores in [110] (a) and [101] direction (b) respectively (regardless of van der Waals radii).

Fig. S3 PXRD patterns of compound 1 for simulated, as-synthesized and EtOH-exchanged samples.

Fig. S4 Thermogravimetric analysis curves of compound 1 for the as-synthesized and EtOH exchanged sample.

Fig. S5 N_2 isotherms for compound 1 at 77 K under 1 atm.

Fig. S6 The linear fitting curve for calculating BET surface area of compound 1.

Fig. S7 *Q*st of CO₂ for compound 1 calculated by MicroActive soft.

Fig. S8 *Q*st of CH4 for compound 1 calculated by MicroActive soft.

Fig. S9 Q_{st} of C_2H_6 for compound 1 calculated by MicroActive soft.

Compound	1
Formula	$C_{29}H_{37}N_9O_{11}Zn_2$
F_w	818.42
Temp (K)	293(2) K
Wavelength(Å)	0.71073
Crystal system	Monoclinic
Space group	C2/m
a (Å)	20.076(5)
b (Å)	19.744(4)
c (Å)	14.250(3)
α (°)	90
β (°)	133.285(6)
γ (°)	90
V(Å ³)	4112.0(16)
Z	4
D _c (Mg m ⁻³)	1.322
Absorption coefficient (mm ⁻¹)	1.196
F(000)	1100
Limiting indices	-23 <= h <= 23,
	-23 <= k <= 23,
	-16 <= l <= 16
Reflections collected/unique (Rint)	17414 / 5221 [<i>R</i> (int) = 0.0560]
Goodness on fit	1.041
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0306, wR_2 = 0.0846$
R indices (all data)	$R_1 = 0.0454, wR_2 = 0.0917$
Largest diff. peak and hole	0.503 and -0.422 e.A ⁻³

S3. Supporting Tables

Table S1. Crystal data and structure refinements for compound 1.

 $R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. \ wR_{2} = \left[\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]\right]^{1/2}$

Compound	The coordination	The coordination	Reference
	mode of	mode of	
	1,2,4-Triazole	polycarboxylate	
Compound 1		zn d zn	This work
[Me ₂ NH ₂] ₄ [Zn ₆ (qptc) ₃ (trz) ₄]·6H ₂ O			1
[Zn ₇ (trz) ₆ (1,2,4,5-BTC) ₂ (H ₂ O) ₆]·8H ₂ O		z_{n-o} z_{n-o} z_{n-o} z_{n-o} z_{n-o}	2
[Zn₃(bta)(trz)₂(H₂O)₄]·2H₂O			3
[Zn(trz)(H ₂ betc) _{0.5}]·DMF			4
[Co(bta) _{0.5} (Htz)(H ₂ O)] _n	N N Co		5

Table S2.	Structural	properties	of the	mixed-ligand	MOFs	containing	1,2,4-triazole	ligand	and
different te	tracarboxy	lic acid coli	gands 1	reported in pul	blicatio	ns.			

 H_4 qptc = terphenyl-2,5,2'5'-tetracarboxylic acid, 1,2,4,5-BTC = 1,2,4,5- benzenetetracarboxylate, bta H_4 = benzene-1,2,4,5-tetracarboxylic acid, H_4 betc = pyromellitic acid, H_4 bta = biphenyl-2,2',6,6'-tetracarboxylic acid.

Compound	BET (m ² g ⁻¹)	CO ₂ (cm ³ g ⁻¹)	Q _{st} (kJ mol ⁻¹)	Reference
ZTF-1	355.3	125.2	25.4	6
[Me ₂ NH ₂][Zn ₂ (BDPP)(ATZ)]·4DMF	1019	124.1	22	7
[Me ₂ NH ₂][Zn ₂ (BDPP)(HTZ)]·4DMF	1157	107.1	22	7
Zn(BPZNO ₂)	916	105.3	20.5	8
SNU-4	N.A.	104.9	N.A.	9
Zn ₂ (BTetB)	1370	100.3	N.A.	10
Zn(BPZ)	390	98.6	23.7	11
$Zn_2(C_2O_4)(C_2N_3H-NH_2)_2$	782	97.2	N.A.	12
Compound 1	976	92.1	25.0	This work
[Zn ₃ (Atz) ₃ (PO ₄)]	470	88.1	32	13
Bio-MOF-1	1630	87.4	24.2	14
$\{[Zn_4(bpydb)_3(datz)_2(H_2O)]$	415	80.9	30.33	15
$(DMF)_4(EtOH)_5(H_2O)_8$				
ZnDDQ	N.A.	73.9	N.A.	16
ZIF-20	N.A.	63.1	N.A.	17
TMU-4	517.9	61.1	25.6-27.8	18
TMU-5	502.7	59.15	43.4	18
Zn ₂ (TCPB)(DPG)	740	59.1	N.A.	19
IRMOF-3	1808	53.8	25.1-21.8	20
SNU-9	824	28	N.A.	21

Table S3. Comparison of compound **1** with other Zn-MOFs which exhibits high capture ability for CO₂ at 273 K under 1 bar.

N.A.: Not Available. The article does not list the data.

Table S4. The refined parameters for the Dual-site Langmuir-Freundlich equations fit for the pure isotherms of CO_2 , CH_4 , C_2H_6 and C_3H_8 for compound **1** at 298 K.

	q _{m1}	b 1	$1/n_1$	q _{m2}	b ₂	1/n ₂	R ²
CO ₂	0.23061	0.05142	0.91846	15.71028	9.66954 E-4	1.07083	0.9999
CH ₄	5.93217	5.89731E-5	1.44645	0.35949	0.01221	0.96227	0.9999
C ₂ H ₆	6.9505	0.00878	0.96039	0.80574	4.11907 E-4	2.06608	0.9999
C ₃ H ₈	5.20293	0.10768	1.14642	0.09069	3.3422 E-13	6.44967	0.9999

Compound	Selectivity	Reference
JLU-Liu33H	13.9	22
ZJNU-55a	13.1	23
Mg-MOF-74	11.5	24
JLU-Liu46	9.8	25
JLU-Liu22	9.4	26
Cu-PEIP	8.9	27
JLU-Liu6	7.4	28
JLU-Liu20	5.9	29
ZJNU-84	5.85	30
Compound 1	5.1	This work
JLU-Liu2	4	31
MOF-5	2.3	32
MIL-53(AI)	2.3	33
Cu ₃ (BTC) ₂	2.3	33
UMCM-1	1.8	33
ZIF-8	1.32	33
MOF-177	0.9	33

Table S5. Comparison of compound **1** with other MOFs which exhibits high selectivity for CO_2 over CH_4 at 298 K under 1 bar.

Reference:

1. X. X. Jia, R. X. Yao, F. Q. Zhang and X. M. Zhang, *Inorg. Chem.*, 2017, 56, 2690-2696.

2. Q. G. Zhai, C. Z. Lu, X. Y. Wu and S. R. Batten. Cryst. Growth Des., 2007, 7, 2332-2342.

3. D. S. Chowdhuri, A. Rana, M. Bera, E. Zangrando and S. Dalai. Galli, *Polyhedron*, 2009, **28**, 2131-2136.

4. X. Meng, R. L. Zhong, X Z. Song, S. Y. Song, Z. M. Hao, M. Zhu, S. N. Zhao and H. J. Zhang, *Chem. Commun.*, 2014, **50**, 6406-6408.

5. L. Cheng, J. Q. Wang and S. H. Gou, Inorg. Chem. Commun., 2011, 14, 261-264.

6. T. Panda, P. Pachfule, Y. Chen, J. Jiang and R. Banerjee, Chem. Commun., 2011, 47, 2011–2013.

7. B. Liu, H. F. Zhou, L. Hou and Y. Y. Wang, *Dalton Trans.*, 2018, 47, 5298-5303.

8. N. Mosca, R. Vismara, J. A. Fernandes, G. Tuci, C. D. Nicola, K. V. Domasevitch, C. Giacobbe, G.

Giambastiani, C. Pettinari, M. Aragones-Anglada, P. Z. Moghadam, D. Fairen-Jimenez, A. Rossin and S. Galli, *Chem. Eur. J.*, 2018, **24**, 13170-13180.

9. Y. G. Lee, H. R. Moon, Y. E. Cheon and M. P. Suh, Angew. Chem. Int. Ed., 2008, 47, 7741-7745.

10. Y. S. Bae, O. K. Farha, J. T. Hupp and R. Q. Snurr, J. Mater. Chem., 2009, 19, 2131-2134.

11. N. Mosca, R. Vismara, J. A. Fernandes, S. Casassa, K. V. Domasevitch, E. Bailon-Garcia, F. J. Maldonado-Hodar, C. Pettinari and S. Galli, *Cryst. Growth Des.*, 2017, **17**, 3854-3867.

(a) R. Vaidhyanathan, S. S. Iremonger, K. W. Dawson and G. K. H. Shimizu, *Chem. Commun.*, 2009, 5230-5232; (b) R. Vaidhyanathan, S. S. Iremonger, G. K. H. Shimizu, P. G. Boyd, S. Alavi and T. K. Woo, *Science*, 2010, **330**, 650-653.

13. R. Vaidhyanathan, S. S. Iremonger, G. K. H. Shimizu, P. G. Boyd, S. Alavi and T. K. Woo, *Angew. Chem. Int. Ed.*, 2012, **51**, 1826-1829.

14. T. Li and N. L. Rosi, Chem. Commun., 2013, 49, 11385-11387.

15. D. M. Chen, N. Xu, X. H. Qiu and P. Cheng, Cryst. Growth Des., 2015, 15, 961-965.

16. Y. Zhu, Y. M. Wang, S. Y. Zhao, P. Liu, C. Wei, Y. L. Wu, C. K. Xia and J. M. Xie, *Inorg. Chem.*, 2014, **53**, 7692-7699.

17. H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keefe and O. M. Yaghi, Nat. Mater., 2007, 6, 501.

18. M. Y. Masoomi, K. C. Stylianou, A. Morsali, P. Retailleau and D. Maspoch, *Cryst. Growth Des.*, 2014, **14**, 2092-2096.

19. T. Gadzikwa, O. K. Farha, K. L. Mulfort, J. T. Hupp and S. T. Nguyen, *Chem. Commun.*, 2009, 3720-3722.

20. S. Ding, Q. Dong, J. Hu, W. Xiao, X. Liu, L. Liao and N. Zhang, *Chem. Commun.*, 2016, **52**, 9757-9760.

21. H. J. Park and M. P. Suh, Chem. Commun., 2010, 46, 610-612.

22. X. Sun, S. Yao, G. Li, L. Zhang, Q. Huo and Y. Liu, Inorg. Chem., 2017, 56, 6645–6651.

23. J. Jiao, H. Liu, F. Chen, D. Bai, S. Xiong and Y. He, Inorg. Chem. Front., 2016, 3, 1411-1418.

24. S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 2008, 130, 10870-10871.

25. B. Liu, S. Yao, X. Liu, Xu. Li, R. Krishna, G. Li, Q. Huo and Y. Liu, *ACS Appl. Mater. Interfaces*, 2017, **9**, 32820-32828.

26. D. Wang, B. Liu, S. Yao, T. Wang, G. Li, Q. Huo and Y. Liu, *Chem. Commun.*, 2015, **51**, 15287-15289.

27. A. Kourtellaris, E. E. Moushi, I. Spanopoulos, C. Tampaxis, G. Charalambopoulou, T. A. Steriotis,
G. S. Papaefstathiou, P. N. Trikalitis and A. J. Tasiopoulos, *Inorg. Chem. Front.*, 2016, 3, 1527-1535.
28. D. Wang, T. Zhao, Y. Cao, S. Yao, G. Li, Q. Huo and Y. Liu, *Chem. Commun.*, 2014, 50, 8648-8650.

29. B. Liu, S. Yao, C. Shi, G. Li, Q. Huo and Y. Liu, *Chem. Commun.*, 2016, **52**, 3223-3226.

30. D. Bai, X. Gao, M. He, Y. Wang and Y. He, Inorg. Chem. Front., 2018, 5, 1423-1431.

- 31. D. Wang, T. Zhao, G. Li, Q. Huo and Y. Liu, *Dalton Trans.*, 2014, **43**, 2365-2368.
- 32. Z. Zhang, S. Xiang, K. Hong, M. C. Das, H. D. Arman, M. Garcia, J. U. Mondal, K. M. Thomas and
- B. Chen, Inorg. Chem., 2012, 51, 4947-4953.
- 33. Z. H. Xiang, X. Peng, X. Cheng, X. J. Li and D. P. Cao, J. Phys. Chem. C, 2011, 115, 19864-19871.