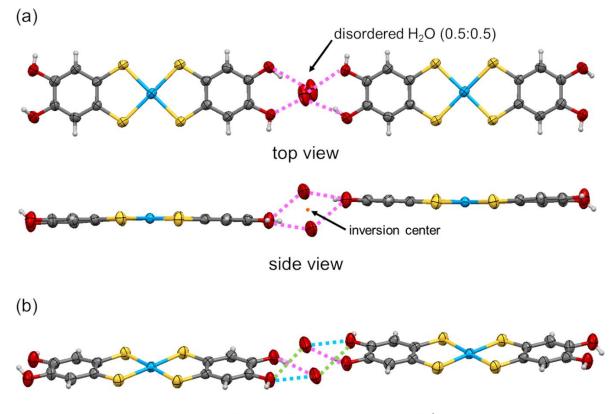
Electronic Supplementary Information (ESI)

Construction of three-dimensional anionic molecular frameworks based on hydrogen-bonded metal-dithiolene complexes and the crystal solvent effect

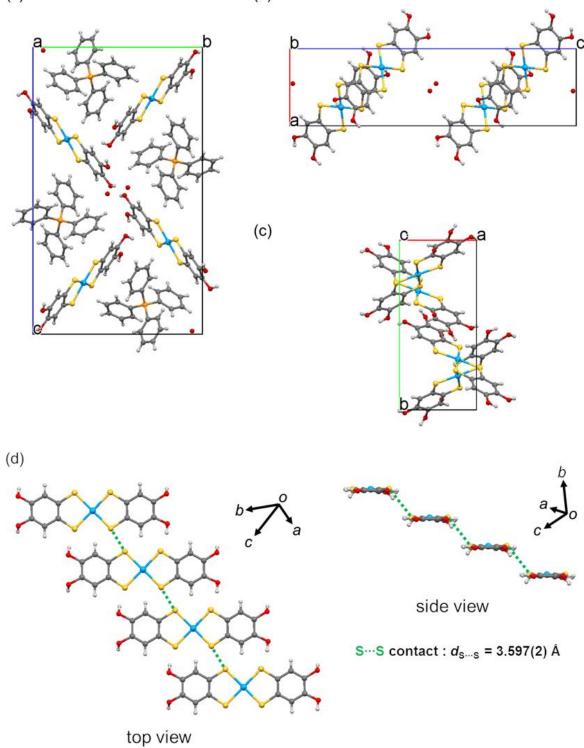

So Yokomori,^a Akira Ueda,^{*a} Toshiki Higashino,^a Reiji Kumai,^b Youichi Murakami^b and Hatsumi Mori^{*a}


^aThe Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 2778581, Japan. E-mail: a-ueda@issp.u-tokyo.ac.jp, hmori@issp.u-tokyo.ac.jp; Fax: +81 4 7136 3410; Tel: +81 4 7136 3410

^bCondensed Matter Research Center (CMRC) and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 3050801, Japan.

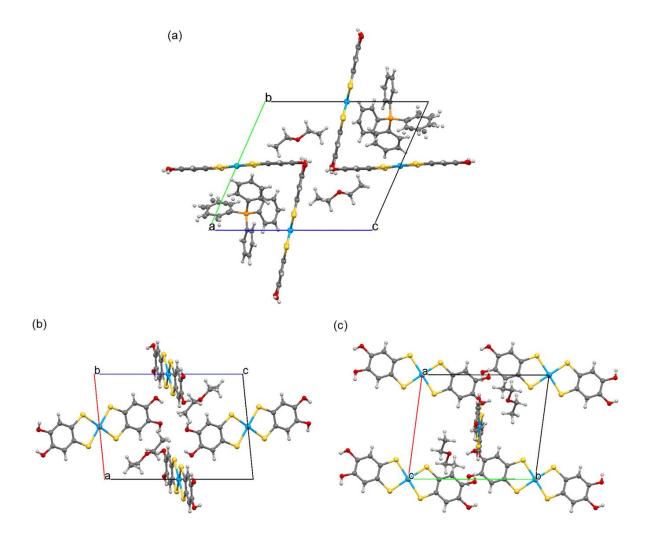
Table of Contents

1.	Additional figures of the crystal structure of (Ph ₄ P)[Au(catdt) ₂]·0.5H ₂ O, 3a S	2–S3
2.	Additional figures of the crystal structure of $(Ph_4P)[Au(catdt)_2] \cdot Et_2O \cdot n(solv)$, 3b S	4–S5
3.	Additional figures of the crystal structure of (Ph ₄ P)[Au(catdt) ₂]·2THF, 3c	6–S7
4.	Figures of the crystal structure of $(Ph_4P)_3[Au(catdt)_2]Br_nCl_{2-n}$, 2	S8
5.	References	S9



 $[Au(catdt)]^--H_2O$ H-bonds : $d_{O...O} = \sim 2.80$ Å

Fig. S1. Hydrogen-bonded motif positionally disordered H₂O molecules (0.5:0.5) and H-bonds between $[Au(catdt)_2]^-$ and H₂O in **3a**. (a) top view (top), side view (bottom) and (b) diagonal view. The thermal ellipsoids are scaled to the 50% probability level. Crystallographically equivalent H-bonds are shown in the same color dashed line in (b).


Fig. S2. Molecular arrangements in the unit cell of **3a**, viewed along the (a) *a*, (b) *b* and (c) *c* axis, respectively. Ph_4P^+ cations are omitted in (b) and (c) for clarify. (d) Top view (left) and side view (right) of $[Au(catdt)_2]^-$ molecules in 2D sheet on 3D framework.

2. $(Ph_4P)[Au(catdt)_2] \cdot Et_2O \cdot n(solv), 3b$

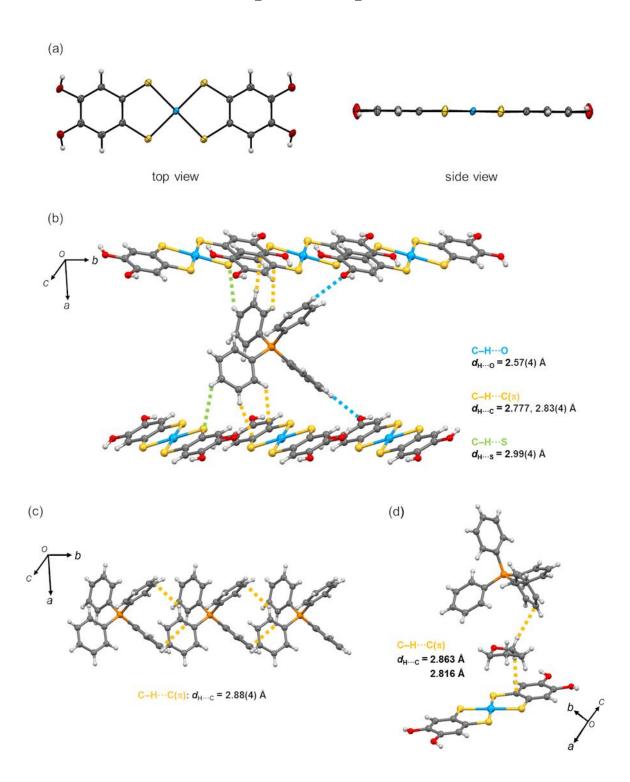
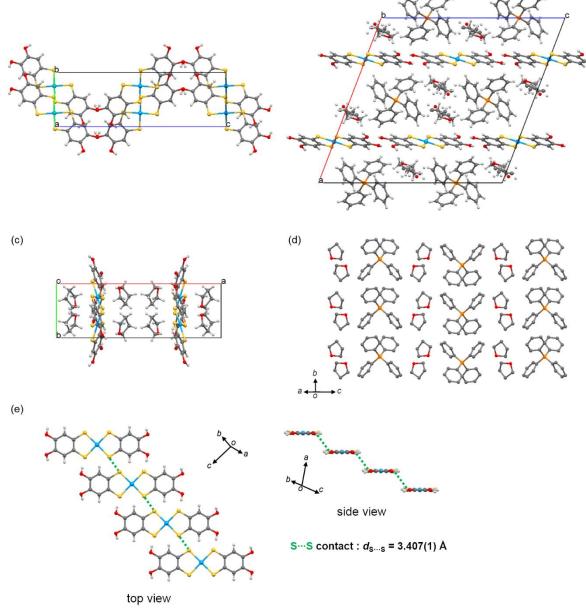
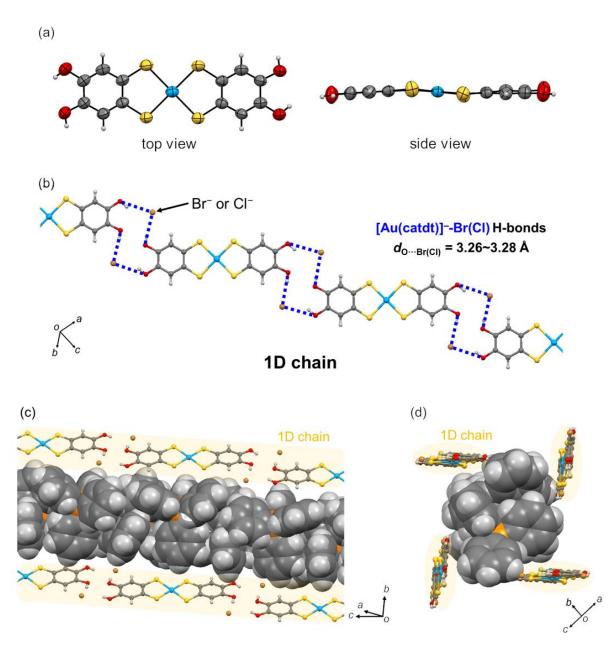


Fig. S3. (a) ORTEP drawings of two kinds of $[Au(catdt)_2]^-$ molecules in **3a**; top view (top), side view (bottom). The thermal ellipsoids are scaled to the 50% probability level. (b) Voids formed between

 Ph_4P^+ and Et₂O molecules in the 1D channel. The volume of each void was calculated to be about 370 Å³ by the Platon/SQUEEZE program^{S1}. According to the crystal structure data, there should be solvent molecules in these voids; however, they are highly disordered and not to be determined. Thus their electron densities were removed by the Platon/SQUEEZE program. (c) Intermolecular H-bonds between [Au(catdt)₂]⁻ and Et₂O in the tubular channel of the framework. Hydrogen atoms on Ph₄P⁺ and Et₂O molecules are omitted in (c) and disordered phenyl group is omitted in (b) and (c) for clarify. (d) Intermolecular short contacts between [Au(catdt)₂]⁻ (framework) and Ph₄P⁺.


Fig. S4. Molecular arrangements in the unit cell of **3b**, viewed along the (a) a, (b) b and (c) c axis, respectively. Ph₄P⁺ cations are omitted in (b) and (c) for clarify.


Fig. S5. (a) ORTEP drawings of $[Au(catdt)_2]^-$ in **3c**; top view (left), side view (right). The thermal ellipsoids are scaled to the 50% probability level. (b) Intermolecular short contacts between $[Au(catdt)_2]^-$ and Ph_4P^+ . (c) Intermolecular short contacts between Ph_4P^+ cations. (d) Intermolecular short contacts between THF and $[Au(catdt)_2]^-$ and between THF and Ph_4P^+ .

(a)

(b)

Fig. S6. Molecular arrangements in the unit cell of **3c**, viewed along the (a) *a*, (b) *b* and (c) *c* axis, respectively. For clarify, Ph_4P^+ cations and THF molecules are omitted in (a) and Ph_4P^+ cations are omitted in (c). (d) Top view of Ph_4P^+ and THF layer seen from vertical direction to 2D layer of $[Au(catdt)_2]^-$ (the same direction as Fig.10a). Hydrogen atoms are omitted in (d) for clarify. (e) Top view (left) and side view (right) of $[Au(catdt)_2]^-$ molecules of 2D layer.

Fig. S7. The crystal structure of anion salt **2**. (a) ORTEP drawings of $[Au(catdt)_2]^-$; top view (left), side view (right). The thermal ellipsoids are scaled to the 50% probability level. (b) The 1D chain structure formed through intermolecular H-bonds between $[Au(catdt)_2]^-$ and Br⁻ (or Cl⁻). (c) Arrangement manner of the 1D chain structures separated by Ph₄P⁺ cations, viewed along the (c) parallel and (d) vertical direction to the chain. (d) Cl⁻ anions are omitted for clarify in (b), (c) and (d).

5. References

S1. (a) P. v. d. Sluis and A. L. Spek, *Acta Crystallogr., Sect. A: Found. Crystallogr.*, 1990, 46, 194–201;
(b) A. L. Spek, *Acta Crystallogr., Sect. D: Biol. Crystallogr.*, 2009, 65, 148–155. (c) A. L. Spek, *Acta Crystallogr. Sect.* C 2015, 71, 9.