Supporting Information for

Coordination polymers based on pyrazole-4-carboxaldehyde-containing Cu_3N_6 metallacycles as building units

David I. Kreiger, Logesh Mathivathanan, and Raphael G. Raptis*

Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199.

Table of Contents

Figure S1. TGA of [2](CF ₃ SO ₃) ₂ , [3](CF ₃ SO ₃) ₂ , and [5](ClO ₄) ₂	2
Figure S2. Powder pattern of [2](CF ₃ SO ₃) ₂	3
Figure S3. Powder pattern of [5](ClO ₄) ₂	4
Figure S4. Powder pattern of [3](CF ₃ SO ₃) ₂ and [4][CF ₃ SO ₃] ₂	5
Figure S5. IR of [3](CF ₃ SO ₃) ₂ before (blue) and after (orange) adding acetonitrile	5
Figure S6. IR of [5](CIO ₄) ₂ before (blue) and after (red) adding acetonitrile	6
Figure S7. IR of $[2](CF_3SO_3)_2$ before (blue) and after (orange) adding acetonitrile	6
Figure S8. ¹ H NMR of [5](ClO ₄) ₂ in acetonitrile- <i>d</i> ³	7

Figure S1. TGA of [2](CF₃SO₃)₂ (blue), [3](CF₃SO₃)₂ (black) and [5](ClO₄)₂ (red).

Figure S2. Powder pattern of [2](CF₃SO₃)₂ (red- experimental; black- simulated).

Figure S3. Powder pattern of **[3](CF₃SO₃)**₂ (purple- experimental; green- simulated) and impurities (**[3](CF₃SO₃)**₂- simulated blue).

Figure S4. Powder pattern of [5](ClO₄)₂ (red- experimental; black- simulated).

Figure S5. IR of [3](CF₃SO₃)₂ before (blue) and after (orange) adding acetonitrile.

Figure S6. IR of $[5](CIO_4)_2$ before (blue) and after (red) adding acetonitrile.

Figure S7. IR of [2](CF₃SO₃)₂ before (blue) and after (orange) adding acetonitrile.

Figure S8. ¹H NMR of $[5](CIO_4)_2$ in acetonitrile- d^3