Electronic supplementary information

A zinc(II) metal–organic framework with high affinity for CO₂ based on

triazole and tetrazolyl benzene carboxylic acid

Donghai Sheng,* Ying Zhang,* Yang Han, Guang Xu, Qingxiang Song, Yanping Hu, Xiangyun Liu, Dongming Shan and Achao Cheng

The State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, P. R. China. Tel:+8610-89733200, E-mail addresses: shengdonghai120@163.com. (Sheng, D. H.); y.zhang@cup.edu.cn (Zhang, Y.).

Contents

Fig. S1. (a) HNMR of 3,5-dimethyl-4H-1,2,4-triazole (Hdmtrz). (b) HNMR of 4-(1H-tetrazol-5-yl)benzoic acid

(H₂tzba).

Table S1. Selected bond lengths [Å] and angles [°] for 1.

Table S2. Isothermal adsorption data and calculated value of Q_{st} .

Table S3. Fitting parameters of DSLF model for CH₄, CO₂ and N₂ at 298K.

Fig. S2. The 1 with channels in the plane of $[1 \ 1 \ 0]$ and this diffraction plane gives the diffraction peak at 2θ =

7.0°.

Fig. S3. SEM images of 1 with different magnifications.

Fig. S4. The pore size distribution of 1.

Fig. S5. CO₂ Compared of simulated isotherm based GCMC and experiments at 195K, 273K and 298 K.

Fig. S1. (a) HNMR of 3,5-dimethyl-4H-1,2,4-triazole (Hdmtrz). (b) HNMR of 4-(1H-tetrazol-5-yl)benzoic acid (H₂tzba).

Table S1. Selected	bond	lengths	[Å]	and angles	; [°]	for 1.
--------------------	------	---------	-----	------------	-------	--------

Zn(1)-O(1)	2.032(3)	Zn(2)-N(1) ⁱⁱ	1.982(3)
Zn(1)-O(1) ^v	2.032(3)	Zn(2)-N(1) ⁱⁱⁱ	1.982(3)
Zn(1)-N(5)	2.033(4)	Zn(2)-N(6) ^{iv}	1.994(3)
Zn(1)-O(2) ⁱ	2.061(3)	Zn(2)-N(6) ^v	1.389(6)
Zn(1)-O(2) ^{vi}	2.061(3)		
Zn(1)-O(1) ^v -O(1)	90.5(2)	Zn(2)–N(6) ^{iv} -N(1) ⁱⁱⁱ	110.9(1)
Zn(1)-N(5)-O(1)	103.7(1)	Zn(2)-N(6) ^{iv} -N(1) ⁱⁱⁱ	107.8(1)
Zn(1)-O(2) ⁱ -O(1) ^v	86.7(1)	Zn(2)-N(1) ⁱⁱⁱ -N(1) ⁱⁱ	109.0(2)
Zn(1)-O(2) ^{vi} -O(1) ^v	157.2(1)	Zn(2)-N(6)-N(1) ⁱⁱⁱ	107.8(1)
Zn(1)-O(2) ⁱ -N(5)	98.87(1)	Zn(2)-N(6)-N(6) ^{iv}	110.2(1)

Symmetry codes used for 1: i=-x+1, -y+1, -z+2; ii=-x+1/2, -y+1/2, -z+2; iii=x+1/2, -y+1/2, z+1; iv=-x+1, y, -z+3; v=x, -y+1, z; vi= -x+1, y, -z+2.

T ₁	T ₂	P ₁	P ₂	Amount(cm ³ /g)	Q _{st} (KJ/mol)
195	273	0.00118	6.87	12.50	49.19
195	273	0.10	12.35	25.01	27.33
195	273	0.50	20.48	37.50	21.07
195	273	1.25	39.56	50.12	19.60
195	273	2.25	54.57	62.53	18.09
195	273	4.23	87.71	75.62	17.16
195	273	6.87	106.16	87.53	16.64
195	273	9.53	140.26	100.07	16.32
195	298	0.00118	20.00	12.53	45.67
195	298	0.10	25.16	25.14	25.93
195	298	0.50	69.42	37.57	23.14
195	298	1.25	114.29	50.31	21.18
195	298	2.25	171.53	62.53	20.32
195	298	4.23	243.61	75.06	18.97
195	298	6.87	306.96	87.53	17.81
195	298	9.53	359.34	100.14	17.02

Table S2. Isothermal adsorption data and calculated value of $\mathsf{Q}_{\text{st}}.$

Adsorbent	Temperature / K	q _c / mmol/g	q _i / mmol/g	K _c	K _i	R ²
CO ₂	298	0.0274	7.1574	-0.0426	0.0263	0.9999
CH ₄	298	0.0085	0.4769	-0.0426	0.0081	0.9999
N ₂	298	0.0086	1.5853	0.0019	0.0085	0.9999

Table S3. Fitting parameters of DSLF model for CH_4 and CO_2 at 298K.

Fig. S2. The 1 with channels in the plane of [1 1 0] and this diffraction plane gives the diffraction peak at $2\theta = 7.0^{\circ}$.

Fig. S3. SEM images of 1 with different magnifications.

Fig. S4. The pore sizedistribution of 1.

Fig. S5. CO₂ adsorption isotherms based on GCMC and experiments at 195K, 273K and 298 K. (a) Simulated ads. CO₂ at 195K. (b) Experimental ads. CO₂ at 195K. (c) Simulated ads. CO₂ at 273K. (d) Experimental ads. CO₂ at 273K. (e) Simulated ads. CO₂ at 298K. (f) Experimental ads. CO₂ at 298K.