Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019

Surporting Information

Two 1D carboxylate-bridged magnets displaying solvent-

dependent canted antiferromagnetic ordering

Zhong-Yi Li,* Wen-Jing Wang, Dong-Qing Wu, Chi Zhang, Fu-Li Zhang, Bin Zhai* and Jian-Jun Zhang*

Materials and Physical measurements. All chemicals were obtained from commercial sources and used without further purification. Elemental analyses were determined by a Vario EL III elemental analyzer. FT-IR spectra were recorded in the range of 4000-400 cm⁻¹ on a JASCO FT/IR-430 spectrometer with KBr pellets. Powder X-ray diffraction (PXPD) measurements were carried out on a Bruker D8 ADVANCE X-ray Diffractometer using Cu K α (λ = 1.5418 Å) at room temperature. Thermogravimetric analyses were performed under a flow of nitrogen (40 mL/min) at a ramp rate of 10 °C/min, using a NETZSCH STA 449F3 instrument. Magnetic measurements were performed on a Quantum Design SQUID magnetometer MPMS XL-7. The data was corrected for the sample holder and the diamagnetic contributions.

Table S1. Selected bond lengths (Å) and angles (°) for 1.

Mn1-O1	2.096(2)	Mn1-O6C	2.190(2)
Mn1-O2A	2.167(2)	Mn1-O9	2.205(2)
Mn1-O5	2.1865(18)	Mn1-O5B	2.2681(18)
O1-Mn1-O2A	88.02(8)	O5-Mn1-O9	165.65(8)
O1-Mn1-O5	97.89(9)	O6C-Mn1-O9	85.56(8)
O2A-Mn1-O5	85.08(8)	O1-Mn1-O5B	165.29(8)
O1-Mn1-O6C	85.91(8)	O2A-Mn1-O5B	104.76(7)
O2A-Mn1-O6C	168.19(8)	O5-Mn1-O5B	76.40(7)
O5-Mn1-O6C	105.78(8)	O6C-Mn1-O5B	82.72(7)
O1-Mn1-O9	91.56(10)	O9-Mn1-O5B	96.82(8)
O2A-Mn1-O9	84.48(8)		

Symmetry codes: A, 1+x, y, z; B, 3-x, 1-y, 2-z; C, 2-x, 1-y, 2-z.

Mn1-O1	2.106(2)	Mn1-O6C	2.1999(18)
Mn1-O5	2.1700(17)	Mn1-O9	2.216(2)
Mn1-O2A	2.1808(19)	Mn1-O5B	2.2340(17)
O1-Mn1-O5	99.08(8)	O2A-Mn1-O9	89.40(8)
O1-Mn1-O2A	86.34(8)	O6C-Mn1-O9	82.51(8)
O5-Mn1-O2A	89.38(7)	O1-Mn1-O5B	171.18(8)
O1-Mn1-O6C	86.43(8)	O5-Mn1-O5B	75.77(6)
O5-Mn1-O6C	99.92(7)	O2A-Mn1-O5B	100.62(7)
O2A-Mn1-O6C	169.02(7)	O6C-Mn1-O5B	87.41(7)
O1-Mn1-O9	91.38(10)	O9-Mn1-O5B	94.08(8)
O5-Mn1-O9	169.37(8)		

 Table S2. Selected bond lengths (Å) and angles (°) for 2.

Symmetry codes: A, 1+x, y, z; B, 2-x, 1-y, 1-z; C, 1-x, 1-y, 1-z.

 Table S3. Selected hydrogen bond lengths (Å) and bond angles (°) in 1.

d(D-H)	d(HA)	∠DHA	$d(D \cdots A)$	А	Symmetry Code
0.818	2.093	170.43	2.902	08	[x+1, y-1, z]
0.85	1.911	163.5	2.736	O7	[-x+3, -y+1, -z+2]
0.93	2.362	138.68	3.122	O3	
	d(D-H) 0.818 0.85 0.93	d(D-H)d(HA)0.8182.0930.851.9110.932.362	d(D-H)d(HA)∠DHA0.8182.093170.430.851.911163.50.932.362138.68	d(D-H)d(HA)∠DHAd(D···A)0.8182.093170.432.9020.851.911163.52.7360.932.362138.683.122	d(D-H)d(HA)∠DHAd(D···A)A0.8182.093170.432.902O80.851.911163.52.736O70.932.362138.683.122O3

Table S4. Selected hydrogen bond lengths (Å) and bond angles (°) in 2.

D-H	d(D-H)	d(HA)	∠DHA	$d(D \cdots A)$	А	Symmetry Code
С6-Н6	0.93	2.242	173.93	3.168	07	
С13-Н13	0.93	2.731	145.63	3.537	09	[-x+2, -y+1, -z+1]

Fig. S1. The IR spectra of 1 and 2.

Fig. S2. TG curves for 1 and 2 in a nitrogen atmosphere (10 °C/min).

Fig. S3. Powder X-ray diffraction patterns of 1.

Fig. S4. Powder X-ray diffraction patterns of 2.

Fig. S5. The 1D chain structure of 1 viewed along *b* axis (a) and [011] axis (b). H bonding: light orange dotted lines; $\pi - \pi$ interaction: lime dotted lines.

Fig. S6. View of the 1D chain structure of **2** along *a* axis (H bonding: light orange dotted lines; π - π interaction: lime dotted lines).

Fig. S7. Coordinate modes of TAc⁻ ligands in 2.

Fig. S8. The 1D chain structure of **2** viewed along *c* axis (b) and [101] axis (c). H bonding: light orange dotted lines; $\pi - \pi$ and N-H- π interactions: lime dotted lines.

Fig. S9. Temperature dependence of the $1/\chi_M$ values for **1** at 1000 Oe dc magnetic field. The red solid line represents the best fit to the data between 44 and 300 K.

Fig. S10. Temperature dependence of the χ_M values for 1 at 1000 Oe dc magnetic field.

Fig. S11. Temperature dependence of the χ'' ac susceptibility for 1 at the indicated frequencies and in the zero dc field.

Fig. S12. Field dependence of the magnetization of 1 at 2.0 K.

Fig. S13. magnetic hysteresis loop for 1 measured at 2.0 K.

Fig. S14. Temperature dependence of the $1/\chi_M$ values for **2** at 1000 Oe dc magnetic field. The red solid line represents the best fit to the data between 10 and 300 K.

Fig. S15. Temperature dependence of the χ_M values for 2 at 1000 Oe dc magnetic field.

Fig. S16. Field dependence of the magnetization of 2 at 2.0 K.

Fig. S17. magnetic hysteresis loop for 2 measured at 2.0 K.