Supplementary data for

Intermolecular interactions and permeability of 5-fluorouracil cocrystals with a series of isomeric hydroxybenzoic acids: A combined theoretical and experimental study

Xia-Lin Dai, Alexander P. Voronin, Wei Gao, German L. Perlovich, Tong-Bu Lu, Jia-Mei Chen*

Table S1 Hydrogen bonding distances and angles of 5FU/SA.

Table ST Hydrogen 00	nunig uistances and a	ingles of SF U/SA.		
hydrogen bond	H···A (Å)	$D \cdots A(Å)$	∠D–H…A (°)	symmetry
N2-H2…O1	1.96	2.817(3)	174.7	1.5-x,0.5+y,0.5-z
N1-H1…O1	1.97	2.815(3)	169.6	1.5-x,-0.5+y,0.5-z
O5–H5…O3	1.90	2.633(6)	148.1	
O4–H4…O2	1.98	2.802(4)	175.7	

Table S2 Crystallographic data and refinement parameters for 5FU/3HBA, 5FU/4HBA I and 5FU/4HBA II.

	5FU/3HBA	5FU/4HBA I	5FU/4HBA II
chemical formula	$C_{11}H_9FN_2O_5$	$C_{11}H_9FN_2O_5$	$C_{11}H_9FN_2O_5$
formula wt	268.20	268.20	268.20
temperature (K)	150(2)	150.02(11)	150.00(10)
crystal size (mm ³)	0.10×0.08×0.05	0.20 imes 0.1 imes 0.1	0.20 imes 0.20 imes 0.10
crystal system	triclinic	Monoclinic	Triclinic
space group	<i>P</i> -1	P21/c	<i>P</i> -1
a (Å)	7.0551(4)	7.0356(3)	6.8225(6)
<i>b</i> (Å)	7.5754(6)	14.9022(13)	8.6115(9)
<i>c</i> (Å)	10.7143(7)	10.2665(4)	10.7203(12)
α (deg)	105.869(6)	90	67.906(10)
β (deg)	96.217(5)	99.418(4)	86.057(8)
γ (deg)	97.652(5)	90	78.308(8)
volume (Å ³)	539.57(6)	1061.90(11)	571.46(10)
Ζ	2	4	2
density (g/cm ³)	1.651	1.678	1.559
2θ range	4.3367-66.6667	5.28-62.95	4.45-62.94
F(000)	276	552	276
index ranges	-8<=h<=6	-7<=h<=7	-7<=h<=5
	-8<=k=9	-17<=k<=16	-9<=k<=9
	-12<=1<=12	-10<=1<=11	-10<=l<=12
no. of reflns	4288	3520	3293
no. of unique reflns	1904	1690	1808
no. of params	185	185	182
$R_{\rm all}, R_{\rm obs}{}^a$	0.0607, 0.0475	0.1014 , 0.0617	0.0630, 0.0456
$wR_{2,all}, wR_{2,obs}^{b}$	0.1377, 0.1253	0.1844, 0.1490	0.1266, 0.1106
Goodness-of-fit on F^2	1.056	1.055	1.054
$a R_{I} = \Sigma F_{o} - F_{c} \Sigma F_{o} $	$.wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma w(R_0^2 - F_c^2)^2] / \Sigma w(R_0^2 - F_c^2)^2]] / \Sigma w(R_0^2 - F_c^2)^2] / \Sigma w(R_0^2 - F_c^2)^2]] / \Sigma w(R_0^2 - F_c^2)]]]]]]]]]]]]]]] [[(R_0^2 - F_c^2)^2]]]]]]]]]]]]]]]]]]]$	$[F_o^2)^2]^{1/2}, w = 1/[\sigma^2 (F_o)^2 + (aP)^2]^{1/2}$	$^{2} + bP$],where $P = [(F_{o}^{2})$

31 0/ 4 11 D A 1 .						
non-covalent	D…A (Å)	∠D–H…A (°)	$\rho_b(a.u.)$	$\nabla^2 \rho_b$ (a.u.)	$G_{b}(a.u.)$	$E_{\rm int}$
interaction	H···A (Å)					(kJ∙mol ⁻¹)
O4−H4···O2ª	2.621 1.624	172.67	0.053	0.151	0.040	44.8
N2–H2···O5ª	2.765*1.731	172.89	0.042	0.121	0.031	34.4
N1–H1…O1 ^b	3.018*1.995	173.23	0.023	0.062	0.016	18.1
O3−H3…O1°	2.948*1.978	170.11	0.023	0.061	0.016	18.1
O3···F1℃	2.649	-	0.012	0.057	0.013	14.2
H9…H9 ^d	1.869	-	0.014	0.047	0.010	11.6
C6–H6···O2 ^e	3.215*2.320	138.70	0.013	0.041	0.010	10.9
C7−H7···O4 ^e	3.277*2.358	141.70	0.011	0.037	0.009	9.7
$C7-H7\cdots F1^{f}$	3.261*2.580	120.22	0.006	0.029	0.006	6.5
C10–H10…O5 ^d	3.479*2.617	136.00	0.007	0.024	0.005	5.7
C8····C1 ^g	3.261	-	0.006	0.022	0.004	4.8
$C3\cdots O4^{f}$	3.231	-	0.006	0.021	0.004	4.8
C9···N1 ^g	3.342	-	0.006	0.018	0.004	4.5
C9…O1 ^h	3.329	-	0.005	0.020	0.004	4.5
$C5\cdots N2^i$	3.343	-	0.006	0.017	0.004	4.2
$C8\cdots C4^i$	3.345	-	0.006	0.018	0.004	4.2
$C3\cdots O2^h$	3.344	-	0.004	0.018	0.003	3.9
C3···C7 ^j	3.395	-	0.006	0.017	0.003	3.9
C3–H3A···O3 ^d	3.877*2.816	166.53	0.004	0.015	0.003	3.5
C9−H9…N1 ^h	3.718*2.958	127.72	0.004	0.015	0.003	3.4
$C6\cdots N2^{g}$	3.484	-	0.005	0.014	0.003	3.4
$H6\cdots H10^{k}$	2.600	-	0.004	0.013	0.002	2.7
E_{laff} (kJ·mol ⁻¹)						222.0

Table S3 Metric and electron density properties in bond critical point of non-covalent interactions in 5FU/AHRA I*

*The electron density ρ_b , Laplacian of electron density $\nabla^2 \rho_b$ and local electronic kinetic energy density G_b at the bond critical point; the energy of the intermolecular noncovalent interaction E_{int} .

Symmetry codes: a x,y,z; b 1-x,1-y,1-z; c x,-1+y,z; d -x,-y,-z; c 1-x,-y,1-z; f x,1/2-y,1/2+z; g 1-x,-1/2+y,1/2-z; h x,1/2-y,1/2+z; i -x,-1/2+y,1/2-z; k x,-1/2-y,1/2+z.

Table S4 Metric and electron density properties in bond critical point of non-covalent interactions in SEU/AUDA II*

3FU/4IIDA II .						
non-covalent	D…A (Å)	∠D–H…A (°)	ρ_{b} (a.u.)	$\nabla^2 \rho_b (a.u.)$	$G_{\mathrm{b}}\left(\mathrm{a.u.} ight)$	$E_{\rm int}$
interaction	H…A (Å)					(kJ∙mol ⁻¹)
O4−H4…O5ª	2.598*1.588	177.13	0.058	0.157	0.044	49.3
O3−H3…O1 ^b	2.619*1.731	148.30	0.039	0.132	0.031	35.4
N1-H1···O2°	2.808*1.776	175.15	0.037	0.111	0.027	30.9
N2–H2···O2 ^d	2.840*1.851	160.81	0.031	0.093	0.023	26.0
C3–H3A…O1e	3.344*2.388	146.59	0.010	0.035	0.008	8.9
$C3-H3A\cdots O3^{f}$	3.234*2.468	126.85	0.009	0.033	0.007	8.1
C3–H3A···O4 ^g	3.281*2.558	123.49	0.008	0.029	0.006	6.9
$N1 \cdots O4^h$	3.126	-	0.008	0.024	0.006	6.5
C6−H6…F1 ^b	3.563*2.510	163.26	0.006	0.027	0.006	6.4
$O1 \cdots O4^i$	3.140	-	0.006	0.024	0.005	6.1
$C2 \cdot \cdot C9^{j}$	3.178	-	0.007	0.024	0.005	5.2
$N2\cdots O5^k$	3.228	-	0.005	0.021	0.005	5.1
$C4 \cdots O5^i$	3.213	-	0.006	0.022	0.004	5.0
C10–H10…F1 ¹	3.455*2.667	129.09	0.005	0.022	0.004	4.8
$O3 \cdots F1^1$	3.226	-	0.004	0.021	0.004	4.7
$C6\cdots C7^i$	3.428	-	0.006	0.017	0.004	4.0
C5…C1	3.305	-	0.005	0.018	0.003	3.9
E_{latt} (kJ·mol ⁻¹)						216.9

*The electron density ρ_b , Laplacian of electron density $\nabla^2 \rho_b$ and local electronic kinetic energy density G_b at the

bond critical point; the energy of the intermolecular noncovalent interaction E_{int} . Symmetry codes: a -x,-y,1-z; b x,y,z; c -x,2-y,-1-z; d 1-x,2-y,-1-z; e 1+x,1+y,z; f 1+x,y,z; g 1-x,1-y,-z; h x,1+y,1+z; -x,1-y,-z; h x,1+y,1+z; -1+x,1+y,z.

non-covalent interaction	D…A (Å) H…A (Å)	$\angle D-H\cdots A(^{\circ})$	ρ_b (a.u.)	$ abla^2 ho_b (a.u.)$	$G_{\mathrm{b}}\left(\mathrm{a.u.} ight)$	E _{int} (kJ∙mol ⁻¹)
O2–H2…O3ª	2.597*1.588	174.84	0.059	0.156	0.044	49.2
N2–H2A····O5 ^b	2.818*1.789	174.30	0.036	0.106	0.026	29.8
N1–H1B…O5 ^c	2.888*1.862	173.57	0.030	0.088	0.022	24.7
O1–H1···O4 ^d	2.801*1.852	162.65	0.028	0.092	0.022	24.7
C4–H4…F1 ^d	3.217*2.154	167.04	0.015	0.051	0.013	14.4
C6–H6…O3e	3.261*2.355	140.02	0.012	0.038	0.009	10.2
C1– $H1A$ ···O2 ^f	3.381*2.352	158.54	0.011	0.036	0.008	9.4
C3–H3····O1 ^g	3.411*2.636	127.96	0.007	0.026	0.006	6.2
$C4\cdots C4^h$	3.152	-	0.008	0.024	0.005	5.6
C11-H11O4e	3.601*2.593	154.51	0.006	0.023	0.005	5.6
F1…O1 ^e	3.155	-	0.004	0.023	0.005	5.2
C11-H1101e	3.455*2.666	129.27	0.005	0.021	0.004	4.9
$N2\cdots O2^h$	3.291	-	0.005	0.020	0.004	4.9
$C7 \cdots O5^i$	3.186	-	0.006	0.022	0.004	4.8
C11–H11····F1 ^j	3.254*2.734	109.12	0.004	0.023	0.004	4.8
F1…F1 ^j	3.162	-	0.003	0.022	0.004	4.7
$C6 \cdots O5^k$	3.300	-	0.006	0.019	0.004	4.5
$C5 \cdots N1^i$	3.444	-	0.006	0.019	0.004	4.5
$C2\cdots C9^i$	3.274	-	0.006	0.020	0.004	4.3
$C11\cdots C7^{h}$	3.368	-	0.005	0.017	0.003	3.7
$C8 \cdots C5^{h}$	3.408	-	0.005	0.015	0.003	3.4
$C6 \cdots O1^{h}$	3.450	-	0.004	0.015	0.003	3.3
$C1\cdots O4^h$	3.470	-	0.004	0.014	0.003	3.1
$C1-H1A\cdots N1^k$	3.737*3.144	115.39	0.003	0.012	0.002	2.6
F_{1} (k.I.mol ⁻¹)						238.6

Table S5 Metric and electron density properties in bond critical point of non-covalent interactions in 5FU/3HBA*.

 E_{latt} (kJ·mol⁻¹)238.6*The electron density ρ_b , Laplacian of electron density $\nabla^2 \rho_b$ and local electronic kinetic energy density G_b at the
bond critical point; the energy of the intermolecular noncovalent interaction E_{int} .
Symmetry codes: a 2-x,-y,-1-z; b -x,-1-y,1-z; c 1-x,-1-y,1-z; d x,y,z; c -1+x,y,z; f 1-x,-y,-1-z; g 2-x,-y,-z; h 1-x,-y,-z; i
1-x,-1-y,-z; j -x,-1-y,-z; k x,y,-1+z.

non-covalent	D…A (Å)	∠D—H…A (°)	ρ _b (a.u.)	$\nabla^2 \rho_b$ (a.u.)	$G_{\rm b}$ (a.u.)	$E_{\rm int}$
interaction	H···A (Å)					(kJ∙mol ⁻¹)
O5−H5…O6ª	2.570*1.673	147.69	0.051	0.145	0.039	43.6
N2–H2···O4 ^b	2.787*1.760	173.12	0.038	0.116	0.029	32.3
O7−H7…O1ª	2.745*1.750	176.05	0.039	0.111	0.028	31.2
N4–H4···O2 ^a	2.801*1.773	174.07	0.037	0.112	0.028	31.0
N1–H1···O4 ^a	2.815*1.784	174.71	0.036	0.108	0.027	30.3
N3–H3···O2°	2.833*1.805	173.67	0.035	0.103	0.025	28.7
F001····O7a	2.687	-	0.011	0.055	0.012	13.5
F001···O6 ^b	2.696	-	0.011	0.050	0.011	12.8
C13-H13····F1 ^d	3.20*2.288	143.06	0.011	0.043	0.010	11.1
C11-H11F1e	3.396*2.343	163.48	0.010	0.037	0.008	9.5
C10-H10O5 ^b	3.429*2.386	160.85	0.011	0.034	0.008	9.1
C12-H12O3e	3.375*2.439	143.79	0.009	0.033	0.007	8.3
C5−H5A…O3 ^b	3.433*2.414	156.12	0.009	0.032	0.007	8.1
C1−H1A…O1 ^b	3.438*2.412	157.22	0.009	0.031	0.007	8.1
$C7 \cdots O1^{f}$	3.029	-	0.008	0.029	0.006	6.8
C15····O4 ^g	3.067	-	0.007	0.027	0.006	6.4
C3···O3 ^g	3.090	-	0.007	0.026	0.005	6.1
$C7 \cdots O5^{h}$	3.133	-	0.007	0.026	0.005	6.0
$N1 \cdots O5^{f}$	3.252	-	0.006	0.023	0.005	5.7
$C14\cdots N3^i$	3.232	-	0.007	0.022	0.005	5.4
$O2\cdots F001^j$	3.107	-	0.004	0.023	0.005	5.2
$N4 \cdots O6^{f}$	3.212	-	0.006	0.020	0.005	5.2
$C15 \cdots O3^i$	3.153	-	0.006	0.023	0.005	5.2
C1–H1A…O6 ^b	3.385*2.695	121.09	0.006	0.022	0.005	5.1
$C5-H5A\cdots O7^k$	3.331*2.821	108.72	0.005	0.022	0.004	4.8
$C10 \cdots N4^{l}$	3.336	-	0.006	0.017	0.004	4.1
$C12 \cdots O2^m$	3.427	-	0.005	0.018	0.004	4.1
$N3\cdots O7^{f}$	3.382	-	0.004	0.016	0.003	3.9
$C3\cdots C13^{f}$	3.408	-	0.005	0.016	0.003	3.6
$C10 \cdots N2^n$	3.413	-	0.005	0.015	0.003	3.6
H12···H5A ^d	2.434	-	0.004	0.014	0.002	2.8
$C1\cdots C11^{f}$	3.559	-	0.004	0.012	0.002	2.6
$C5 \cdots C1^n$	3.638	-	0.003	0.009	0.002	2.1
$F_{\rm c}$ (k l·mol ⁻¹)						377 3

 $\frac{E_{latt} (kJ \cdot mol^{-1})}{*The electron density \rho_b, Laplacian of electron density <math>\nabla^2 \rho_b$ and local electronic kinetic energy density G_b at the bond critical point; the energy of the intermolecular noncovalent interaction E_{int} . Symmetry codes: ^a x,y,z; ^b x,1+y,z; ^c x,-1+y,z; ^d -1/2+x,-1/2+y,1+z; ^e -1/2+x,1/2+y,1+z; ^f x,-y,-1/2+z; ^g x,-y,1/2+z; ^h 1/2+x,-1/2-y,-1/2+z; ⁱ -1/2+x,-1/2-y,1/2+z; ⁱ -1/2+x,-1/2-y,-1/2+z; ^k 1/2+x,1/2-y,-1/2+z; ^l 1/2+x,1/2-y,-1/2+z; ^m -1/2+x,1/2-y,-1/2+z; ^m -1/2+x,1/2-z; ^m -1/2+x,1/2+z; ^m -1/2+z; ^m -1/2+z; ^m -1/2+z; y, 1/2+z; n x, 1-y, 1/2+z.

Fig. S1 XRPD patterns of as-synthesized samples and simulated from the single crystal data for (a) 5FU/4HBA I, (b) 5FU/4HBA II, (c) 5FU/3HBA and (d) 5FU/SA.

Fig. S2 2D sheet structures of (a) 5FU/3HBA, (b) 5FU/4HBA II and (c) 5FU/4HBA I.

Fig. S3 IR spectra of 5FU and 5FU/SA.

Fig. S4 TG/DSC curve of 5FU/SA.

Fig. S5 The π -stacking and van der Waals interactions in 5FU/4HBA I. The interaction energies are given in kJ·mol⁻¹.

Fig. S6 The C–H···O contacts (green) and π -stacking interactions (magenta) in 5FU/4HBA II. The interaction energies are given in kJ·mol⁻¹.

Fig. S7 XRPD patterns of 5FU cocrystals before and after solubility test in different pH buffers.

Fig. S8 IDR comparisons of 5FU and its cocrystals in pH 6.8 buffer at 37 °C.

Fig. S9 Cumulative amount per unit area permeated (Q_n) 5FU and physical mixtures vs time plot.