Electronic Supplementary Information (ESI)

Piroxicam-clonixin drug-drug cocrystal solvates with enhanced hydration stability

Duanxiu Li, ${ }^{\text {ab }}$ Jiong Li, ${ }^{\text {b* }}$ Zongwu Deng, ${ }^{\text {ab }}$ and Hailu Zhang ${ }^{\text {ab* }}$

[^0]
Contents

Experimental section S4
Table S1 The solvent property parameters and cocrystal screening resultsS8
Fig. S1 Experimental and simulated powder XRD patterns of PXC-CNX-MeCN (a),PXC-CNX-AC (b), PXC-CNX-EA (c), PXC-CNX-CHCl ${ }_{3}$ (d), and PXC-CNX-$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (e)S9
Table S2 Crystallographic data for five PXC-CNX cocrystal solvates S10Table S3 Hydrogen bond distances and angles for five PXC-CNX cocrystalsolvates.S12
Fig. S2 The asymmetric units of PXC-CNX-MeCN (a), PXC-CNX-AC (b), PXC-CNX-EA (c), PXC-CNX-CHCl 3_{3} (d), and PXC-CNX-CH2Cl ${ }_{2}$ (e)............................ S_{14}Fig. S3 1D molecular tape structures of PXC-CNX-MeCN (a), PXC-CNX-AC (b),S15

Fig. S4 Two adjacent PXC-CNX molecular tapes in the same plane (a), the parallel packing of four PXC-CNX molecular tapes (b), 3D packing structure of PXC-CNXMeCN viewed along the a axis (c). Halogen-bond interactions in PXC-CNX-CHCl ${ }_{3}$ (d). 3D packing structure of PXC-CNX-EA viewed along the a axis (e). S17

Fig. S5 TG analysis curves for PXC-CNX-MeCN (a), PXC-CNX-AC (b), PXC-CNXEA (c), PXC-CNX-CHCl ${ }_{3}$ (d), PXC-CNX-CH2Cl ${ }_{2}$ (e), PXC-CNX-DMF (f), PXC-CNX-THF (g), and PXC-CNX-0.5C $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~h})$S18

Fig. S6 Liquid ${ }^{1} \mathrm{H}$ NMR spectra of the 8 cocrystal solvates. PXC-CNX-MeCN (a), PXC-CNX-AC (b), PXC-CNX-EA (c), PXC-CNX-CHCl ${ }_{3}$ (d), $\mathrm{PXC}-\mathrm{CNX}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (e), PXC-CNX-DMF (f), PXC-CNX-THF (g), and PXC-CNX-0.5C6 H_{6} (h)..................S19
Fig. S7 Powder XRD patterns of desolvated PXC-CNX-MeCN (a), PXC-CNX-AC (b), PXC-CNX-EA (c), PXC-CNX-CHCl 3_{3} (d), PXC-CNX-CH2 Cl_{2} (e), PXC-CNXTHF (f), and PXC-CNX- $0.5 \mathrm{C}_{6} \mathrm{H}_{6}$ (g). The simulated patterns for CNX form I (h), PXC form $\alpha 2$ (i), and PXC form I (j) are also provided.

Fig. S8 Energy framework diagrams for separate electrostatic (a) and dispersion (b) contributions to the total interaction energies (c) in PXC-CNX-EA. The thickness of
each cylinder represents the relative strength of interaction. The energy threshold for the energy framework is set at $-15 \mathrm{~kJ} \mathrm{~mol}^{-1}$.S24

Table S4 Intermolecular interaction energies ($\mathrm{kJ} \mathrm{mol}^{-1}$) of PXC-CNX-EA cocrystal solvate estimated using B3LYP/6-31G (d, p) dispersion-corrected DFT models (CNX as a central molecule).

Table S5 Intermolecular interaction energies ($\mathrm{kJ} \mathrm{mol}^{-1}$) of PXC-CNX-EA cocrystal solvate estimated using B3LYP/6-31G (d, p) dispersion-corrected DFT models (PXC as a central molecule)

Fig. S9 Powder XRD patterns of CNX (a and b), PXC (c-g), and PXC-CNX-EA (h and i) before and after equilibration at $95 \% \mathrm{RH} / 25^{\circ} \mathrm{C}$ for different periods. Simulated powder XRD pattern of $\mathrm{PXC} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{j})$ is also provided. S27

Reference ...S28

Experimental section

Materials

Clonixin (CNX, form I, >98\%) was purchased from TCI. Piroxicam (PXC, form $\alpha 2$, $>98 \%$) was purchased from Aladdin. All organic solvents of analytical grade were purchased from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used without further purification.

Cocrystal screening

Method 1: Slurry experiment. Equimolar (0.5 mmol) of CNX and PXC were mixed in 2.5 mL of solvent and stirred for 3 days.
Method 2: Mechanochemical synthesis. Neat grinding and liquid-assisted grinding (LAG) experments (using the solvents in Table S1) were performed on a Pulverisette 23 (Fritsch, Germany) ball mill. Equimolar (0.5 mmol) of CNX and PXC were mixed in a $10-\mathrm{mL}$ stainless steel jar with one $15-\mathrm{mm}$ stainless steel grinding ball. For LAG experiments, the value of volume of solvent/sample weight was fixed at $0.30 \mu \mathrm{~L} / \mathrm{mg}$. Ball milling was performed at 40 Hz for 20 min .

Method 3: Solvent exchanging. 300 mg of PXC-CNX-MeCN was stirred in 2.5 mL of solvent $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{EtOH}\right.$, i-PrOH, DMSO, EG, MPD, DOX, $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{7} \mathrm{H}_{8}$, and PX) for 72 hours.

Synthesis of PXC-CNX-MeCN cocrystal solvate

Equimolar of CNX ($131 \mathrm{mg}, 0.5 \mathrm{mmol}$) and PXC ($166 \mathrm{mg}, 0.5 \mathrm{mmol}$) were mixed in 2.5 mL of MeCN and stirred for 3 days. The suspension was filtered and the isolated solids of PXC-CNX-MeCN were dried under a vacuum for 24 hours. The filtrate was left to evaporate slowly at room temperature. After several days, plate-shaped, light yellow crystals of PXC-CNX-MeCN were obtained.

Synthesis of PXC-CNX-AC cocrystal solvate

Equimolar of CNX ($131 \mathrm{mg}, 0.5 \mathrm{mmol}$) and PXC ($166 \mathrm{mg}, 0.5 \mathrm{mmol}$) were mixed in 2.5 mL of AC and stirred for 3 days. The suspension was filtered and the isolated solids of PXC-CNX-AC were dried under a vacuum for 24 hours. The filtrate was left to evaporate slowly at room temperature. After several days, plate-shaped, light yellow crystals of PXC-CNX-AC were obtained.

Synthesis of PXC-CNX-EA cocrystal solvate

Equimolar of CNX ($131 \mathrm{mg}, 0.5 \mathrm{mmol}$) and PXC ($166 \mathrm{mg}, 0.5 \mathrm{mmol}$) were mixed in 2.5 mL of EA and stirred for 3 days. The suspension was filtered and the isolated solids of PXC-CNX-EA were dried under a vacuum for 24 hours. The filtrate was left to evaporate slowly at room temperature. After several days, plate-shaped, light yellow crystals of PXC-CNX-EA were obtained.

Synthesis of PXC-CNX-CHC1 $\mathbf{3}_{3}$ cocrystal solvate

Equimolar of CNX ($131 \mathrm{mg}, 0.5 \mathrm{mmol}$) and PXC ($166 \mathrm{mg}, 0.5 \mathrm{mmol}$) were mixed in 2.5 mL of CHCl_{3} and stirred for 3 days. The suspension was filtered and the isolated solids of $\mathrm{PXC}-\mathrm{CNX}-\mathrm{CHCl}_{3}$ were dried under a vacuum for 24 hours. The filtrate was left to evaporate slowly at room temperature. After several days, plate-shaped, light yellow crystals of $\mathrm{PXC}-\mathrm{CNX}-\mathrm{CHCl}_{3}$ were obtained.

Synthesis of PXC-CNX- $\mathrm{CH}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ cocrystal solvate

Equimolar of CNX ($131 \mathrm{mg}, 0.5 \mathrm{mmol}$) and PXC ($166 \mathrm{mg}, 0.5 \mathrm{mmol}$) were mixed in 2.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred for 3 days. The suspension was filtered and the isolated solids of PXC-CNX- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried under a vacuum for 24 hours. The filtrate was left to evaporate slowly at room temperature. After several days, plate-shaped, light yellow crystals of PXC-CNX- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained.

Synthesis of PXC-CNX-DMF cocrystal solvate

Equimolar of CNX ($262 \mathrm{mg}, 1 \mathrm{mmol}$) and PXC ($331 \mathrm{mg}, 1 \mathrm{mmol}$) were mixed in 2.5 mL of DMF and stirred for 3 days. The suspension was filtered and the isolated solids of PXC-CNX-DMF were dried under a vacuum for 24 hours. The single crystal suitable for structure determination was not obtained.

Synthesis of PXC-CNX-THF cocrystal solvate

Equimolar of CNX ($131 \mathrm{mg}, 0.5 \mathrm{mmol}$) and PXC ($166 \mathrm{mg}, 0.5 \mathrm{mmol}$) were mixed in 2.5 mL of THF and stirred for 3 days. The suspension was filtered and the isolated solids of PXC-CNX-THF were dried under a vacuum for 24 hours. The single crystal suitable for structure determination was not obtained.

Powder X-ray diffraction (Powder XRD)

Powder XRD of all the samples were recorded on a Bruker D8 Advance X-ray powder diffractometer (Bruker AXS, Karlsruhe, Germany) equipped with a LynxEye detector ($\mathrm{Cu} \mathrm{K} \alpha$ radiation). The tube current and voltage of the generator were set to

40 mA and 40 kV , respectively. The data were recorded over the 2θ range from 4° to 40° scanning with a step size of 0.0194° at ambient temperature.

Single crystal X-ray diffraction (Single crystal XRD)

Single crystal XRD measurements of PXC-CNX-MeCN, PXC-CNX-CHCl ${ }_{3}$ and PXC-CNX- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were made using an Xcalibur, Atlas, Gemini diffractometer (Agilent, Santa Clara, California) and the measurements of PXC-CNX-AC and PXC-CNX-EA were made using a Bruker APEX-II CCD diffractometer (Bruker AXS, Karlsruhe, Germany) with an enhanced X-ray source $\operatorname{Mo} \operatorname{K} \alpha(\lambda=0.71073 \AA)$ at 193 K . The five crystal structures were solved by direct methods and refined on F^{2} by fullmatrix least-squares methods with the SHELXL-2017 program. ${ }^{1}$ All non-hydrogen atoms were refined anisotropically. Hydrogen atoms associated with carbon atoms were fixed in geometrically constrained positions. The active hydrogen atoms on the $\mathrm{O} / \mathrm{N}-\mathrm{H}$ groups of all structures were located from the difference Fourier maps. The summary of key crystallographic data and hydrogen bonding metrics are given in Table S2 and Table S3, respectively.

${ }^{1} \mathrm{H}$ liquid NMR

${ }^{1} \mathrm{H}$ liquid NMR spectra of all cocrystal solvates were acquired using a Varian 400 MHz spectrometer (Varian Inc. Palo Alto, CA) using DMSO-d6 as a solvent.

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)

TGA was performed on a Mettler Toledo TGA1 STAR System at a heating rate of 10 ${ }^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ under nitrogen. DSC was performed on a TA Discovery DSC 250 instrument. Samples were placed in sealed aluminum pans and heated at $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ to $300^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ under nitrogen atmosphere $\left(50 \mathrm{~mL} \cdot \mathrm{~min}^{-1}\right)$.

Moisture stability

PXC-CNX-EA and raw materials (CNX and PXC) were exposed under 95\% RH conditions at $25{ }^{\circ} \mathrm{C}$ for 4 weeks. The resulting solids were subjected to powder XRD measurements to monitor possible phase transformation.

Energy framework calculation

The pairwise intermolecular interaction energy was estimated using CrystalExplorer and Gaussian09W with experimental crystal geometry. ${ }^{2,3}$ Considering the uncertainty of hydrogen position by single crystal X-ray diffraction, the hydrogen positions were
normalized to standard neutron diffraction values during the calculation. The total intermolecular interaction energy for given molecule, is summed up the electrostatic, polarization, dispersion, and exchange-repulsion components terms with scale factors of $1.057,0.740,0.871$, and $0.618 .{ }^{4}$ The intermolecular interaction is neglected with molecule-molecule distance more than 3.8 Å. ${ }^{5}$

Table S1 The solvent property parameters and cocrystal screening results

	solvent	α	β	$\mathrm{E}_{\mathrm{T}}(30)$	New phase	Single crystal
1	water $\left(\mathrm{H}_{2} \mathrm{O}\right)^{a}$	117	47	631	-	
2	methanol (MeOH) ${ }^{\text {b }}$	98	66	554	-	
3	ethanol (EtOH) ${ }^{b}$	86	75	519	-	
4	isopropanol (i-PrOH) ${ }^{\text {b }}$	76	84	492	-	
5	acetonitrile (MeCN) ${ }^{b}$	19	40	456	\checkmark	\checkmark
6	acetone (AC) ${ }^{b}$	08	43	422	\checkmark	\checkmark
7	ethyl acetate (EA) ${ }^{b}$	00	45	381	\checkmark	\checkmark
8	chloroform $\left(\mathrm{CHCl}_{3}\right)^{b}$	20	10	391	$\sqrt{ }$	\checkmark
9	dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{b}$	13	10	407	\checkmark	\checkmark
10	N, N-dimethylformamide (DMF) ${ }^{b}$	00	69	438	\checkmark	时
11	tetrahydrofuran (THF) ${ }^{b}$	00	55	374	\checkmark	Po
12	dimethyl sulfoxide (DMSO) ${ }^{b}$	00	76	451	-	
13	ethanediol (EG) ${ }^{a}$	90	52	563	-	
14	1,2-propanediol (MPD) ${ }^{b}$	83	78	541	-	
15	1,4-dioxane (DOX) ${ }^{b}$	00	37	360	-	
16	benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)^{b}$	00	10	343	-	Do
17	toluene $\left(\mathrm{C}_{7} \mathrm{H}_{8}, \mathrm{Tol}\right)^{b}$	00	11	339	-	
18	para-xylene (PX) ${ }^{b}$	00	12	331	-	
${ }^{a}$ from ref. 6.						
${ }^{b}$ from ref. 7.						

[^1](a)

(b)

(d)

(e)

Fig. S1 Experimental and simulated powder XRD patterns of PXC-CNX-MeCN (a), PXC-CNX-AC (b), PXC-CNX-EA (c), PXC-CNX-CHCl ${ }_{3}$ (d), and PXC-CNX$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (e).

Table S2 Crystallographic data for five PXC-CNX cocrystal solvates

	PXC-CNX-MeCN	PXC-CNX-AC	PXC-CNX-EA	PXC-CNX-CHCl ${ }_{3}$	PXC-CNX-CH ${ }_{2} \mathrm{Cl}_{2}$
Formula	$\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{ClN}_{6} \mathrm{O}_{6} \mathrm{~S}$	$\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{ClN}_{5} \mathrm{O}_{7} \mathrm{~S}$	$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{ClN}_{5} \mathrm{O}_{8} \mathrm{~S}$	$\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{Cl}_{4} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}$	$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{Cl}_{3} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}$
Formula weight	635.08	652.11	682.13	713.40	678.96
Temperature $/ \mathrm{K}$	$193(2)$	$193(2)$	$193(2)$	$193(2)$	$193(2)$
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	$P-1$	$P-1$	$P-1$	$P-1$	$P-1$
a / \AA	$7.2364(8)$	$7.3032(5)$	$7.1077(7)$	$7.2799(5)$	$7.2499(2)$
b / \AA	$13.684(2)$	$14.0521(8)$	$14.4856(13)$	$13.8946(11)$	$13.7111(6)$
c / \AA	$15.767(2)$	$15.9432(11)$	$16.6126(15)$	$16.4922(13)$	$15.8281(7)$
$\alpha /{ }^{\circ}$	$71.515(13)$	$69.237(2)$	$105.468(3)$	$68.131(7)$	$71.255(4)$
$\beta /{ }^{\circ}$	$83.596(10)$	$81.657(2)$	$98.006(3)$	$82.312(6)$	$85.172(3)$
$\gamma /{ }^{\circ}$	$81.899(11)$	$77.712(2)$	$103.645(3)$	$81.865(6)$	$83.669(3)$
V / \AA^{3}	$1462.3(4)$	$1490.51(17)$	$1564.2(3)$	$1526.6(2)$	$1478.85(11)$
Z	2	2	2	2	2
$\rho_{\text {cald }} /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.442	1.453	1.448	1.552	1.525
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{mm}^{-1}$	0.258	0.256	0.250	0.509	0.434
$F(000)$	660	680	712	732	700
total reflections	11946	23478	58082	19767	17757

unique reflections	$5196\left(R_{\mathrm{int}}=0.0540\right)$	$5375\left(R_{\mathrm{int}}=0.0765\right)$	$7200\left(R_{\mathrm{int}}=0.0657\right)$	$5977\left(R_{\mathrm{int}}=0.0692\right)$	$5360\left(R_{\mathrm{int}}=0.0343\right)$
no. observations	3244	4015	5564	3367	4247
no. parameters	426	434	452	423	411
$R_{1}[I>2 \sigma(I)] / R_{1}$	$0.0550 / 0.1017$	$0.0506 / 0.0781$	$0.0547 / 0.0789$	$0.0579 / 0.1175$	$0.0481 / 0.0625$
$w R_{2}[I>2 \sigma(I)] / w R_{2}$	$0.1097 / 0.1293$	$0.1368 / 0.1504$	$0.1240 / 0.1339$	$0.1186 / 0.1460$	$0.1344 / 0.1446$
GOF	1.025	0.996	1.051	0.967	1.053
$\Delta \rho \max / \Delta \rho \min \left(\mathrm{e} \AA^{-3}\right)$	$0.259 /-0.328$	$0.383 /-0.405$	$0.385 /-0.439$	$0.328 /-0.303$	$0.643 /-0.688$
CCDC	1913246	1913247	1913248	1913249	1913250

Table S3 Hydrogen bond distances and angles for five PXC-CNX cocrystal solvates

	D-H ${ }^{\text {a }}$	D-H/A	H $\cdots \mathrm{A} / \AA$	D $\cdots \mathrm{A} / \AA$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A} /{ }^{\circ}$	Symmetry code
PXC-CNX-MeCN	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{O}(1)$	0.88(3)	1.93(3)	2.685(4)	144(3)	$-\mathrm{x}+1,-\mathrm{y}+2,-\mathrm{z}+1$
	$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{C}) \cdots \mathrm{O}(5)$	0.91(4)	1.64(4)	2.532(3)	167(4)	
	$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A}) \cdots \mathrm{O}(5)$	0.90(3)	1.77(3)	2.549(3)	143(3)	
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(6)$	0.93(4)	1.93(4)	$2.638(4)$	131(3)	
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(6)$	0.93(4)	2.27(3)	2.918(3)	126(3)	
PXC-CNX-AC	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{O}(1)$	0.92(3)	1.91(3)	2.701(3)	143(2)	
	$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{C}) \cdots \mathrm{O}(5)$	1.02(3)	1.53(3)	2.552(2)	173(3)	
	$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A}) \cdots \mathrm{O}(5)$	0.84(3)	1.85(3)	2.575(3)	143(3)	
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(6)$	0.82(3)	1.97(3)	2.623(3)	136(3)	
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(6)$	0.82(3)	2.38(2)	2.932(2)	126(2)	$-\mathrm{x}+1,-\mathrm{y}+2,-\mathrm{z}+1$
PXC-CNX-EA	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{O}(1)$	0.83(3)	1.98(3)	2.702(2)	145(2)	
	$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{C}) \cdots \mathrm{O}(5)$	0.94(4)	1.62(4)	2.545(2)	169(3)	
	$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A}) \cdots \mathrm{O}(5)$	0.90(3)	1.77(3)	2.551(2)	144(2)	
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(6)$	0.90(3)	1.94(3)	2.641(2)	133(2)	
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(6)$	0.90(3)	2.30(3)	2.913(2)	125(2)	$-\mathrm{x}+1,-\mathrm{y}+2,-\mathrm{z}+1$
PXC-CNX-CHCl ${ }_{3}$	$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{O}(1)$	0.82(3)	1.98(3)	2.698(4)	146(3)	
	$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{C}) \cdots \mathrm{O}(5)$	0.99(5)	1.56(5)	2.545 (3)	170(5)	

	$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A}) \cdots \mathrm{O}(5)$	$0.92(4)$	$1.77(4)$	$2.555(4)$	$142(3)$	
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(6)$	$0.89(4)$	$1.92(4)$	$2.634(4)$	$136(3)$	
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(6)$	$0.89(4)$	$2.34(4)$	$2.929(4)$	$123(3)$	$-\mathrm{x}+1,-\mathrm{y}+2,-\mathrm{z}+1$
	$\mathrm{~N}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{O}(1)$	$0.86(3)$	$1.94(3)$	$2.694(3)$	$146(3)$	
	$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{C}) \cdots \mathrm{O}(5)$	$0.93(4)$	$1.62(4)$	$2.546(2)$	$171(4)$	
	$\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A}) \cdots \mathrm{O}(5)$	$0.83(3)$	$1.83(3)$	$2.552(3)$	$145(3)$	
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(6)$	$0.76(3)$	$2.07(3)$	$2.661(3)$	$135(3)$	
	$\mathrm{N}(5)-\mathrm{H}(5 \mathrm{~A}) \cdots \mathrm{O}(6)$	$0.76(3)$	$2.39(3)$	$2.919(3)$	$128(3)$	$-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}+1$

(a)

(b)

(c)

(d)

(e)

Fig. S2 The asymmetric units of PXC-CNX-MeCN (a), PXC-CNX-AC (b), PXC-CNX-EA (c), PXC-CNX-CHCl ${ }_{3}$ (d), and PXC-CNX- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (e).

(a)

(b)

(c)

(d)

(e)

Fig. S3 1D molecular tape structures of PXC-CNX-MeCN (a), PXC-CNX-AC (b), PXC-CNX-EA (c), PXC-CNX-CHCl ${ }_{3}$ (d), and PXC-CNX-CH2Cl ${ }_{2}$ (e).

(c)

(d)

(e)

Fig. S4 Two adjacent PXC-CNX molecular tapes in the same plane (a), the parallel packing of four PXC-CNX molecular tapes (b), and 3D packing structure of PXC-CNX-MeCN viewed along the a axis (c). Halogen-bond interactions in PXC-CNX$\mathrm{CHCl}_{3}(\mathrm{~d})$. 3D packing structure of PXC-CNX-EA viewed along the a axis (e).

Fig. S5 TG analysis curves for PXC-CNX-MeCN (a), PXC-CNX-AC (b), PXC-CNXEA (c), PXC-CNX-CHCl ${ }_{3}$ (d), PXC-CNX- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (e), PXC-CNX-DMF (f), PXC-CNX-THF (g), and PXC-CNX-0.5C6 H_{6} (h).

(a)

(b)
(c)

(d)

(e)

(f)

THF-DMSO-HNMRSTANDARD 1H OBSERVE - profile -

(g)

(h)

Fig. S6 Liquid ${ }^{1} \mathrm{H}$ NMR spectra of the 8 cocrystal solvates. PXC-CNX-MeCN (a), PXC-CNX-AC (b), PXC-CNX-EA (c), PXC-CNX-CHCl ${ }_{3}$ (d), $\mathrm{PXC}-\mathrm{CNX}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (e), PXC-CNX-DMF (f), PXC-CNX-THF (g), and PXC-CNX-0.5C6 H_{6} (h).

Fig. S7 Powder XRD patterns of desolvated PXC-CNX-MeCN (a), PXC-CNX-AC (b), PXC-CNX-EA (c), PXC-CNX-CHCl 3_{3} (d), PXC-CNX- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (e), PXC-CNXTHF (f), and PXC-CNX- $0.5 \mathrm{C}_{6} \mathrm{H}_{6}$ (g). The simulated patterns for CNX form I (h), PXC form $\alpha 2$ (i), and PXC form I (j) are also provided. In some samples, trace amounts of residual solvates (feature diffraction peak at $\sim 13^{\circ}$) are also present.

Fig. S8 Energy framework diagrams for separate electrostatic (a) and dispersion (b) contributions to the total interaction energies (c) in PXC-CNX-EA. The thickness of each cylinder represents the relative strength of interaction. The energy threshold for the energy framework is set at $-15 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Table S4 Intermolecular interaction energies ($\mathrm{kJ} \mathrm{mol}^{-1}$) of PXC-CNX-EA cocrystal solvate estimated using B3LYP/6-31G (d, p) dispersion-corrected DFT models (CNX as a central molecule).

\square	Number	Molecule	N	Symop	R	E_ele	E_pol	E_dis	E_rep	E_tot
\square	1	PXC	1	-	6.19	-11.8	-13.3	-64.4	43.6	-51.5
\square	2	PXC	1	-	7.68	-0.5	-1.9	-15.2	5.8	-11.6
\square	3	CNX	1	$-\mathrm{x},-\mathrm{y},-\mathrm{z}$	8.72	-2.7	-0.3	-12.8	5.9	-10.5
\square	4	PXC	1	-	5.5	-2.6	-5.9	-71.7	42.4	-43.4
\square	5	CNX	1	$-\mathrm{x},-\mathrm{y},-\mathrm{z}$	6.84	-6.8	-0.8	-11.5	1.6	-16.8
\square	6	EA	1	-	8.78	-1.1	-0.5	-4.7	2.3	-4.2
\square	7	PXC	1	-	13.17	-0.6	-0.4	-5	3.3	-3.1
\square	8	PXC	1	-	7.88	-14.1	-5.5	-11.1	11.5	-21.6
\square	9	CNX	1	$-x,-y,-z$	6.62	-8.7	-1.1	-16.6	6.1	-20.6
\square	10	PXC	1	-	8.08	-95.5	-23.8	-24.1	107.3	-73.3
\square	11	EA	1	-	5.91	-4	-1.1	-25.4	19.8	-14.9
\square	12	PXC	1	-	13.66	0	-0.1	-1.2	0	-1.1
\square	13	EA	1	-	7.79	0.7	-1.1	-7.2	2.5	-4.8
\square	14	EA	1	-	8.96	-1.8	-0.5	-9.6	7	-6.3

Table S5 Intermolecular interaction energies ($\mathrm{kJ} \mathrm{mol}^{-1}$) of PXC-CNX-EA cocrystal solvate estimated using B3LYP/6-31G (d, p) dispersion-corrected DFT models (PXC as a central molecule).

\square	Number	Molecule	N	Symop	R	E_ele	E_pol	E_dis	E_rep	E_tot
\square	1	CNX	1	-	6.19	-11.8	-13.3	-64.4	43.6	-51.5
\square	2	EA	1	-	10.39	-16.5	-4.9	-9.6	12	-22.1
\square	3	PXC	1	$-\mathrm{x},-\mathrm{y},-\mathrm{z}$	7.95	-109.6	-29.4	-44.1	63.1	-137.1
\square	4	PXC	2	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	7.11	11.5	-3.7	-6.7	1.6	4.6
\square	5	CNX	1	-	8.08	-95.5	-23.8	-24.1	107.3	-73.3
\square	6	CNX	1	-	5.5	-2.6	-5.9	-71.7	42.4	-43.4
\square	7	PXC	1	$-\mathrm{x},-\mathrm{y},-\mathrm{z}$	9.53	-13.9	-6.3	-31.2	24.7	-31.2
\square	8	EA	1	-	7.8	-3.8	-0.7	-7.2	3.2	-8.8
\square	9	EA	1	-	10.29	-0.5	-0.1	-5.1	3.9	-2.7
\square	10	CNX	1	-	13.66	0	-0.1	-1.2	0	-1.1
\square	11	PXC	1	$-\mathrm{x},-\mathrm{y},-\mathrm{z}$	9.87	-4.3	-1.4	-37.2	23.7	-23.3
\square	12	CNX	1	-	7.88	-14.1	-5.5	-11.1	11.5	-21.6
\square	13	CNX	1	-	7.68	-0.5	-1.9	-15.2	5.8	-11.6
\square	14	EA	1	-	7.97	-4.6	-3.2	-10	6.8	-11.7
\square	15	CNX	1	-	13.17	-0.6	-0.4	-5	3.3	-3.1
\square	16	EA	1	-	8.53	-3.2	-2.1	-8.8	7.5	-7.9
\square	17	EA	1	-	9.03	-0.1	-0.1	-1.7	0	-1.6

Fig. S9 Powder XRD patterns of CNX (a and b), PXC (c-g), and PXC-CNX-EA (h and i) before and after equilibration at $95 \% \mathrm{RH} / 25^{\circ} \mathrm{C}$ for different periods. Simulated powder XRD pattern of $\mathrm{PXC} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{j})$ is also provided.

References

1 G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. C, 2015, 71, 3-8.

2 M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka and M. A. Spackman. 2017. CrystalExplorer17. University of Western Australia.

3 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E.Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. E. Gomperts, O. Stratmann, A. J. Yazyev, R. Austin, C. Cammi, J. W. Pomelli, R. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A. (2009), Gaussian, Inc., Wallingford CT.

4 M. J. Turner, S. Grabowsky, D. Jayatilaka, M. A. Spackman, Accurate and efficient model energies for exploring intermolecular interactions in molecular crystals. J. Phys. Chem. Lett., 2014, 5(24), 4249-4255.

5 M. J. Turner, S. P. Thomas, M. W. Shi, D. Jayatilaka, M. A. Spackman, Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Comm., 2015, 51(18), 3735-3738.

6 Y. Marcus, Ed. Wiley: The Properties of Solvents, 1998.
7 Y. Marcus, The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev., 1993, 22 (6), 409-416.

[^0]: ${ }^{a}$ Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of NanoTech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China. Tel: +86-512-62872713; Fax: +86-512-62603079; E-mail: hlzhang2008@sinano.ac.cn.
 ${ }^{b}$ CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China. E-mail: jli2006@sinano.ac.cn.

[^1]: "-" means a mixture of the starting materials in different forms: $1, \mathrm{PXC} \cdot \mathrm{H}_{2} \mathrm{O}+\mathrm{CNX} \mathrm{I;} \mathrm{5}$, $\alpha 2+$ amorphous; 11, PXC•PX+CNX I; others, PXC $\alpha 2+$ CNX I.

