Supplementary Information

Efficient approach to modulate the coordination number of yttrium ion for diverse network formation

Jiwon Park[†], Jin Young Koo[†], Hee Cheul Choi*

Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, 37673, Korea

*E-mail: choihc@postech.edu

Contents of Supplementary Information

General	S3-S4
1: General experimental information	
2: Syntheses	
3: Single crystal X-ray structure determination	
Figures and Tables	S5-S18
References	S19

1: General experimental information

Yttrium nitrate hydrate (Y(NO₃)₃·xH₂O) (Sigma Aldrich, 99.8% trace metal basis), 2,6-naphthalene dicarboxylic acid (H₂NDC) (TCI, >98.0% (GC)), N,N-dimethylformamide (Samchun, 99.0%) were purchased from commercial sources and used without further purification and deionized water (Milli-Q System, Millipore, Billerica, MA, USA) was used. All crystallization processes were conducted in a thermal oven (OF-11E, JEIOTECH, Korea). The photoluminescence (PL) images and spectra were obtained using a fluorescence microscope (Olympus microscope) and spectrometer (SpectraPro, Prineton Instruments) equipped with a filter set (Exciter BP 330 – 380 nm; beam splitter 400 nm; Emitter LP 410 nm, Semrock). Powder X-ray diffraction data was obtained from synchrotron X-ray source (PAL 5D beamline) with 1.23992 Å. Note that the two theta values were rescaled to the conventional wavelength (Cu K α = 1.54057 Å) for a better comparison with reference data.

2: Syntheses

Synthesis of Y7-MOF, $[Y_2NDC_3(C_3H_7NO)_2]$: $Y(NO_3)_3 \cdot xH_2O$ (38.30 mg, 0.1 mmol) was dissolved in 1:1 mixture of DMF/DI water (4 mL). H₂NDC (12.21 mg, 0.05 mmol) was dissolved in DMF (2 mL). The yttrium nitrate solution was slowly added into a 20 mL scintillation vial that contains the H₂NDC solution. The reaction mixture was sealed and placed in the thermal oven at 80°C for 48 hours, after which colorless stubby rod crystals were found on the bottom of the vial (16.2 mg, 85.4%).

Synthesis of Y9-MOF, $[Y_2NDC_3(C_3H_7NO)_4]$ ·2H₂O: $Y(NO_3)_3$ ·xH₂O (38.30 mg, 0.1 mmol) was dissolved in DMF (3 mL). H₂NDC (12.21 mg, 0.05 mmol) was dissolved in DMF (3 mL). The yttrium nitrate solution was slowly added into the H₂NDC solution. The reaction mixture was sealed and placed in the thermal oven at 80°C for 48 hours, after which colorless rectangular, plate shaped crystals were found on the bottom of the vial (9.4 mg, 37%).

3: Single crystal X-ray structure determination

The X-ray diffraction data for **Y7-MOF** and **Y9-MOF** were recorded on an ADSC Q210 CCD area detector with a synchrotron radiation ($\lambda = 0.65000$ Å) at 2D beamline in Pohang Accelerator Laboratory (PAL). The diffraction images were processed by using HKL3000¹. Absorption correction was performed by using the program PLATON². The structure was solved by ShelXT³ using Intrinsic Phasing and refined by ShelXL⁴. All the non-hydrogen atoms were refined anisotropically. All hydrogen atoms were added to their geometrically ideal positions.

Y7-MOF, [**Y**₂**NDC**₃(**C**₃**H**₇**NO**)₂]: C₄₂H₃₂N₂O₁₄Y₂, crystal dimensions $0.41 \times 0.22 \times 0.13 \ \mu\text{m}^3$, Monoclinic $P2_1/c$, a = 22.7429(9) Å, b = 8.9462(3) Å, c = 18.9147(8) Å, α = 90 °, β = 101.149(3) °, γ = 90 °, V = 377.5.8 Å ³, T = -173 °C (Reported CCDC deposit number: 1878168)

Y9-MOF, [**Y**₂**NDC**₃(**C**₃**H**₇**NO**)₄]-2**H**₂**O**: C₄₈H₄₆N₄O₁₉Y₂, crystal dimensions $0.30 \times 0.25 \times 0.20 \ \mu\text{m}^3$, triclinic *P-1*, a = 11.655(2) Å, b = 12.214(2) Å, c = 13.356(3) Å, a= 101.56(3) °, \beta = 98.59(3) °, \gamma = 107.22(3) °, V = 1734.3(7) Å³, T = -173 °C (Reported CCDC deposit number: 1878170)

Fig S1. Optical (top row) and polarized (bottom row) microscope images of yttrium-based MOFs

Fig S2. Void space of **Y9-MOF**: 40.8 % (706.76Å³).

Fig S3. Comparison of the experimental (red) and predicted (black) PXRD patterns of Y7-MOF.

Fig S4. (a) Comparison of the experimental (red) and predicted (black) PXRD patterns of **Y9-MOF**. The result shows instability of **Y9-MOF** under ambient atmosphere. (b) Optical microscope image of **Y9-MOF** after measuring PXRD. This clearly indicates the structural collapse of **Y9-MOF** during measurement.

Y(NO ₃) ₃	H ₂ NDC	DMF	DI water (mL)	Network	
			2		
	mg, 12.21 mg, mol 0.05 mmol		1	Y7-MOF	
38.30 mg,		12.21 mg, 0.05 mmol	1 mg, 4 ml	0.5	
0.1 mmol			0.05 mmol	0.1 mmol 0.05 mmol 4 mL	4 111
		0.01	Y9-MOF		
		-			

Table S1. Reaction condition to evaluate the effect of the amount of water.

Y(NO ₃) ₃	H ₂ NDC	DMF	DI water (mL)	Network
			2	
0.1 mmol	0.05 mmol	4 mL	1	Y7-MOF
			0.5	

Fig S5. Optical (top row) and polarized (bottom row) microscope images of **Y7-MOF**s. When 2 mL water is added in the solution, small crystals are formed. When 0.5 mL water is added, crystals with relatively bad crystallinity are formed.

Y(NO ₃) ₃	H ₂ NDC	DMF	DI water (mL)	Network
			0.1	
0.1 mmol	0.05 mmol	4 mL	0.01	Y9-MOF
			-	

Fig S6. Optical (top row) and polarized (bottom row) microscope images of **Y9-MOF**s. When 0.1 mL water is added in the solution, small amounts of crystals are formed. When water is not added, imperfect crystals are formed.

Fig S7. Comparison of the PXRD patterns of **Y9-MOFs**. Predicted: black, experimental: red, 0.1 mL water is added: magenta, 0.01 mL water is added: dark cyan, and water is not added: blue. This results clealy indicate the structural collapse of **Y9-MOF** during measurement.

Y(NO ₃) ₃	NDC ²⁻	Network
	0.2 mmol	Y7-MOF
0.1 mmol	0.02 mmol	
	0.01 mmol	19-MOF

 Table S2. Reaction condition to evaluate the effect of NDC²⁻ concentration.

Fig S8. (a) Comparison of the experimental and predicted PXRD patterns with **Y7-MOF**, **Y9-MOF** and the crystals obtained with 0.2 mmol NDC²⁻. This result clearly shows that when 0.2 mmol NDC²⁻ is used, the PXRD pattern matches with **Y7-MOF**. (b) The size of crystals obtained with 0.2 mmol NDC²⁻. Due to its very small size, it was not possible for SC-XRD measurement.

Fig S9. Optical (top row) and polarized (bottom row) microscope images of **Y9-MOF**s. When 0.02 mmol of NDC^{2-} is used for precursor, clear rectangular shaped crystals are formed. However, when 0.01 mmol of NDC^{2-} is used for precursor, imperfect crystals are formed.

Fig S10. Comparison of the PXRD patterns of **Y9-MOFs**. Predicted: black, experimental: red, 0.02 mmol NDC2- is used: blue, 0.01 mmol NDC2- is used: dark cyan. This results clealy indicate the structural collapse of **Y9-MOF** during measurement.

Fig S11. Photoluminescence spectra of (a) Y7-MOF (cyan) and Y9-MOF (red), (b) H_2NDC (cyan).

Fig S12. (a) PL, and (b) optical microscope images of solvent-free **Y9-MOF**. (c) PL spectra of **Y9-MOF** (blue) and solvent-free **Y9-MOF** (red).

References

- Otwinowski Z.; Minor, W. Methods Enzymol., Processing of X-ray Diffraction Data Collected in Oscillation Mode 1997, 276, 307-326.
- 2) Spek, A. L. Acta Crystallogr. D, 2009, 65, 148-155.
- 3) Sheldrick, G. M. University of Göttingen, Germany, 1996.
- 4) Sheldrick, G. M. Acta Crystallogr. A, 2008, A64, 112-122.