Electronic Supplementary Information

From BTO²⁻ to HBTO⁻ insensitive energetic salt: Route to

boost energy

Yuangang Xu,^a Dongxue Li,^b Qiuhan Lin,^a Pengcheng Wang^a and Ming Lu*^a

^a School of Chemical Engineering, Nanjing University of Science and Technology,

Nanjing 210094, Jiangsu, China.

^b China National Quality Supervision Testing Center for Industrial Explosive Materials,

Xiaolingwei 200, Nanjing 210094, Jiangsu, China.

E-mail: *luming@njust.edu.cn*

Table of Contents

1.	Single-crystal X-ray diffraction analysis of 3.2H ₂ O	S3
2.	Single-crystal X-ray diffraction analysis of 4	S5
3.	Calculation of heats of formation	S 8
	References	S 8

1. Single-crystal X-ray diffraction analysis of $3.2H_2O$

	3 ·2H ₂ O
CCDC	1903600
Empirical formula	$C_6H_{14}N_{18}O_4$
Formula weight	402.35
Temperature / K	205
Crystal system	monoclinic
Space group	$P2_1/c$
<i>a</i> / Å	8.9135(17)
b / Å	14.392(3)
<i>c</i> / Å	6.7544(14)
α /°	90.00
β /°	110.499(4)
γ /°	90.00
Volume / Å ³	811.6(3)
Ζ	2
$ ho_{ m calc}$ / g cm ⁻³	1.646
μ / mm ⁻¹	0.138
F(000)	416.0
Crystal size / mm ³	0.25×0.12×0.05
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2θ range for data collection/°	4.878 to 55.272
Index ranges	$-11 \le h \le 9$, $-18 \le k \le 18$, $-7 \le l \le 8$
Reflections collected	6965
Independent reflections	1869 [$R_{\rm int} = 0.0535, R_{\rm sigma} = 0.0552$]
Data / restraints / parameters	1869 / 0 / 131
Goodness-of-fit on F^2	1.030
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0556$, w $R_2 = 0.1599$
Final <i>R</i> indexes [all data]	$R_1 = 0.0779$, w $R_2 = 0.1751$
Largest diff. peak / hole / e Å ⁻³	0.62 / -0.66

Table S1.	Crystal	data and	structure refi	inement f	or $3.2H_2O$
	-1				_

Table S2.	Selected	bond	lengths	for	$3 \cdot 2 H_2 O$	

parameter		bond length (Å)	parameter		bond length (Å)
01 Ne	6	1.315(2)	N5	C1	1.320(3)
O2 H2	2A	0.8501	N9	N8	1.347(3)
O2 H2	2B	0.8501	N9	C3	1.337(3)
N2 N1	1	1.403(3)	N3	C2	1.293(3)
N2 C2	2	1.386(3)	N6	N7	1.343(3)
N2 CI	1	1.358(3)	N6	C3	1.350(3)
N4 H4	4	0.87	N1	H1A	0.8633
N4 N3	3	1.384(3)	N1	H1B	0.8629
N4 C1	1	1.327(3)	N7	N8	1.316(3)
N5 H5	5A	0.87	C2	C2 ¹	1.453(4)
N5 H5	5B	0.87	C3	C3 ²	1.428(5)

¹-X,1-Y,-Z; ²1-X,1-Y,1-Z

parameter			bond angle (°)	parame	parameter		bond angle (°)
H2A	02	H2B	109.5	N7	N6	C3	108.9(2)
C2	N2	N1	132.49(19)	N2	N1	H1A	110.1
C1	N2	N1	121.26(19)	N2	N1	H1B	109.1
C1	N2	C2	106.2(2)	H1A	N1	H1B	109
N3	N4	H4	124.2	N8	N7	N6	105.9(2)
C1	N4	H4	124.2	N7	N8	N9	111.3(2)
C1	N4	N3	111.61(19)	N2	C2	C2 ¹	123.9(3)
H5A	N5	H5B	120	N3	C2	N2	111.55(19)
C1	N5	H5A	120	N3	C2	C2 ¹	124.6(3)
C1	N5	H5B	120	N4	C1	N2	106.2(2)
C3	N9	N8	105.9(2)	N5	C1	N2	124.9(2)
C2	N3	N4	104.39(19)	N5	C1	N4	128.9(2)
01	N6	N7	122.1(2)	N9	C3	N6	108.0(2)
01	N6	C3	129.0(2)	N9	C3	C3 ²	127.2(3)
N6	C3	C3 ²	124.8(3)				
¹ -X,1-Y,-Z; ² 1-X,1-Y,1-Z							

Table S3. Selected bond angles for $3{\cdot}2\mathrm{H_2O}$

Table S4. Selected torsion angles for $3{\cdot}2\mathrm{H_2O}$

para	meter			torsion angle (°)	para	meter			torsion angle (°)
01	N6	N7	N8	178.9(2)	N7	N6	C3	N9	0.3(3)
01	N6	C3	N9	-178.9(2)	N7	N6	C3	C3	178.4(3)
01	N6	C3	C3	-0.8(5)	N8	N9	C3	N6	-0.1(3)
N4	N3	C2	N2	-0.4(3)	N8	N9	C3	C3	-178.2(3)
N4	N3	C2	C2	179.2(3)	C2	N2	C1	N4	-1.7(3)
N3	N4	C1	N2	1.5(3)	C2	N2	C1	N5	178.0(2)
N3	N4	C1	N5	-178.2(2)	C1	N2	C2	N3	1.4(3)
N6	N7	N8	N9	0.4(3)	C1	N2	C2	C2	-178.3(3)
N1	N2	C2	N3	178.7(2)	C1	N4	N3	C2	-0.7(3)
N1	N2	C2	C2	-1.0(5)	C3	N9	N8	N7	-0.2(3)
N1	N2	C1	N4	-179.4(2)	C3	N6	N7	N8	-0.4(3)
N1	N2	C1	N5	0.3(4)					
¹ 1-X	¹ 1-X,1-Y,1-Z; ² -X,1-Y,-Z								

Table S5. Hydrogen bonds for $3.2H_2O$

Donor	HAccep	otor	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)
N(1)	H(1A)	N(7)	0.86	2.54	3.327(3)	151
N(1)	H(1B)	N(5)	0.86	2.43	2.842(3)	110
N(1)	H(1B)	O(1)	0.86	2.49	3.335(3)	167
O(2)	H(2A)	O(1)	0.85	1.92	2.746(3)	163
O(2)	H(2A)	N(6)	0.85	2.57	3.208(3)	133
O(2)	H(2B)	N(9)	0.85	2.06	2.853(3)	155
N(4)	H(4)	O(2)	0.87	1.76	2.593(3)	160
N(5)	H(5A)	N(8)	0.87	2.09	2.928(4)	162
N(5)	H(5B)	N(1)	0.87	2.56	2.842(3)	100
N(5)	H(5B)	O(1)	0.87	2.08	2.935(3)	168

2. Single-crystal X-ray diffraction analysis of 4

	4
CCDC	1903599
Empirical formula	$C_8H_{12}N_{26}O_4$
Formula weight	536.44
Temperature / K	205
Crystal system	triclinic
Space group	P-1
<i>a</i> / Å	6.4179(5)
b / Å	7.4575(5)
c / Å	10.8598(8)
α /°	74.881(5)
β /°	74.297(5)
γ /°	88.026(6)
Volume / Å ³	482.68(6)
Ζ	1
$ ho_{ m calc}$ / g cm ⁻³	1.845
μ / mm ⁻¹	0.153
<i>F</i> (000)	274.0
Crystal size / mm ³	0.18×0.12×0.11
Radiation	$MoK\alpha \ (\lambda = 0.71073)$
2θ range for data collection/°	4.036 to 55.594
Index ranges	$-8 \le h \le 8, -9 \le k \le 9, -14 \le l \le 13$
Reflections collected	8188
Independent reflections	2264 $[R_{int} = 0.0932, R_{sigma} = 0.0715]$
Data / restraints / parameters	2264 / 2 / 177
Goodness-of-fit on F^2	1.009
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0579, wR_2 = 0.1584$
Final <i>R</i> indexes [all data]	$R_1 = 0.0902, wR_2 = 0.1748$
Largest diff. peak / hole / e Å ⁻³	0.65 / -0.65

Table S6.	Crystal	data and	l structure	refinement	t for 4
	~				

Table S7. Selected bond lengths for 4

parameterbond length (Å)parameterO1N2AA1.328(3)N4AAN5	bond length (Å)
01 N2AA 1.328(3) N4AA N5	
	1.342(3)
O1 H1 0.87(2) N4AA C6	1.333(3)
N2 N3 1.299(3) N2AA C7	1.343(3)
N2 N2AA 1.332(3) N6 C7	1.329(3)
N3 N6 1.357(3) N1 H1A	0.87
O4 N4AA 1.317(3) N1 H1B	0.87
N3AA C0AA 1.348(3) N1 C0AA	1.322(3)
N3AA C1AA 1.379(3) C1AA C1AA ¹	1.459(5)
N3AA N4 1.388(3) N4 H4A	0.8637
N0AA N1AA 1.376(3) N4 H4B	0.8637
N0AA C1AA 1.294(3) N5 N8	1.295(3)
N1AA H1AA 0.87 C6 C7	1.442(4)

N1AA	COAA	1.334(4)	C6	N9	1.342(3)
N8	N9	1.347(3)			
4					

¹ -X	2-	Y.	2-	٠Z
	,-		,-	-

paramete	parameter bond angle (°) param		paramet	er	bond angle (°)		
N2AA	01	H1	98(4)	H1A	N1	H1B	120
N3	N2	N2AA	106.3(2)	C0AA	N1	H1A	120
N2	N3	N6	111.0(2)	C0AA	N1	H1B	120
C0AA	N3AA	C1AA	106.2(2)	N1AA	C0AA	N3AA	106.5(2)
C0AA	N3AA	N4	121.0(2)	N1	C0AA	N3AA	123.3(3)
C1AA	N3AA	N4	132.4(2)	N1	C0AA	N1AA	130.1(3)
C1AA	N0AA	N1AA	104.6(2)	N3AA	C1AA	C1AA ¹	123.4(3)
N0AA	N1AA	H1AA	124.5	N0AA	C1AA	N3AA	111.6(2)
C0AA	N1AA	N0AA	111.0(2)	N0AA	C1AA	C1AA ¹	125.0(3)
C0AA	N1AA	H1AA	124.5	N3AA	N4	H4A	109.1
O4	N4AA	N5	122.6(2)	N3AA	N4	H4B	110.3
O4	N4AA	C6	128.6(2)	H4A	N4	H4B	108.8
C6	N4AA	N5	108.8(2)	N8	N5	N4AA	106.4(2)
01	N2AA	N2	123.5(2)	N4AA	C6	C7	124.5(2)
01	N2AA	C7	127.1(2)	N4AA	C6	N9	108.2(2)
N2	N2AA	C7	109.4(2)	N9	C6	C7	127.3(2)
C7	N6	N3	105.7(2)	N2AA	C7	C6	125.6(2)
N5	N8	N9	111.4(2)	N6	C7	N2AA	107.6(2)
C6	N9	N8	105.3(2)	N6	C7	C6	126.8(2)

Table S8. Selected bond angles for 4

¹-X,2-Y,2-Z

Table S9. Selected torsion angles for 4

parameter	torsion angle (°)	parameter	torsion angle (°)
O1-N2AA-C7-N6	-179.3(2)	C0AA-N3AA-C1AA-N0AA	-0.9(3)
O1-N2AA-C7-C6	1.4(4)	C0AA-N3AA-C1AA-C1AA	177.8(3)
N2-N3-N6-C7	1.0(3)	C1AA-N3AA-C0AA-N1AA ¹	1.1(3)
N2-N2AA-C7-N6	0.5(3)	C1AA-N3AA-C0AA-N1	178.5(2)
N2-N2AA-C7-C6	-178.8(2)	C1AA-N0AA-N1AA-C0AA	0.4(3)
N3-N2-N2AA-O1	179.9(2)	N4-N3AA-C0AA-N1AA	175.0(2)
N3-N2-N2AA-C7	0.1(3)	N4-N3AA-C0AA-N1	-7.5(4)
N3-N6-C7-N2AA	-0.9(3)	N4-N3AA-C1AA-N0AA	-173.8(2)
N3-N6-C7-C6	178.5(2)	N4-N3AA-C1AA-C1AA ¹	4.9(5)
O4-N4AA-N5-N8	179.4(2)	N5-N4AA-C6-C7	-177.3(2)
O4-N4AA-C6-C7	2.5(4)	N5-N4AA-C6-N9	0.5(3)
O4-N4AA-C6-N9	-179.7(2)	N5-N8-N9-C6	-0.4(3)
N0AA-N1AA-C0AA-N3AA	-0.9(3)	C6-N4AA-N5-N8	-0.7(3)
N0AA-N1AA-C0AA-N1	-178.2(3)	C7-C6-N9-N8	177.7(3)
N1AA-N0AA-C1AA-N3AA	0.3(3)	N9-C6-C7-N2AA	1.4(4)
N1AA-N0AA-C1AA-C1AA ¹	-178.4(3)	N9-C6-C7-N6	-177.8(3)
N4AA-N5-N8-N9	0.7(3)	N4AA-C6-N9-N8	-0.1(3)
N4AA-C6-C7-N2AA	178.8(2)	N2AA-N2-N3-N6	-0.7(3)
N4AA-C6-C7-N6	-0.4(4)		
1 V 2 V 2 7			

 1 -X,2-Y,2-Z

Donor	HAccepto	or	D-H (Å)	HA (Å)	DA (Å)	D-HA (°)
01	H1	04	0.87(4)	1.64(3)	2.479(3)	162(5)
01	H1	N4AA	0.87(4)	2.48(3)	3.150(3)	135(4)
N1AA	H1AA	N9	0.87	2.11	2.919(3)	156
N1	H1A	N6	0.87	2.19	2.926(3)	142
N1	H1B	N4	0.87	2.5	2.793(3)	100
N1	H1B	N9	0.87	2.38	3.209(4)	159
N4	H4A	01	0.86	2.54	3.399(3)	173
N4	H4B	N8	0.86	2.46	3.000(3)	121

Table S10. Hydrogen bonds for 4

Fig. S1 The long chain of HBTO⁻ anions along the b axis by formation of very strong hydrogen bonds O1-H1...O4.

Fig. S2 The anions of the adjacent layers are fixed in a rectangular (in red) by hydrogen bonds with the cations.

3. Calculation of heats of formation

For energetic salts, the solid-phase heats of formation are calculated on the basis of a Born-Haber energy cycle (Scheme S1).

Based on a Born-Haber energy cycle, the heat of formation of a salt can be simplified by the formula given in Equation (1):

 $\Delta H_{\rm f}^{\rm o}$ (salt, 298 K) = $\Delta H_{\rm f}^{\rm o}$ (cation, 298K) + $\Delta H_{\rm f}^{\rm o}$ (anion, 298K) - $\Delta H_{\rm L}$ (1)

where $\Delta H_{\rm L}$ is the lattice energy of the salts, which could be predicted by using the formula suggested by Jenkins et al.² [Eq. (2)]

 $\Delta H_{\rm L} = U_{\rm POT} + [p(n_{\rm M}/2 - 2) + q(n_{\rm X}/2 - 2)]RT(2)$

where $n_{\rm M}$ and $n_{\rm X}$ depend on the nature of the ions, M_p^+ and X_q^- , and are equal to 3 for monatomic ions, 5 for linear polyatomic ions, and 6 for nonlinear polyatomic ions.

The equation for lattice potential energy U_{POT} [Eq. (3)] has the form:

 $U_{\rm POT} \, [\rm kJ \, mol^{-1}] = \gamma (\rho_m / M_m)^{1/3} + \delta \, (3)$

Where $\rho_m/g \text{ cm}^{-3}$ is the density, M_m is the chemical formula mass of the ionic material, and values for the coefficients $\gamma/kJ \text{ mol}^{-1} \text{ cm}$ and $\delta/kJ \text{ mol}^{-1}$ are taken from the literature³.

Scheme S1. Born-Haber cycle for the formation of energetic salts

References

- 1 E. R. Johnson and S. Keinan, J. Am. Chem. Soc., 2010, 132, 6498-6506.
- 2 H. D. B. Jenkins, D. Tudela and L. Glasser, *Inorg. Chem.*, 2002, **41**, 2364-2367.
- 3 H. D. B. Jenkins, H. K. Roobottom, J. Passmore and L. Glasser, *Inorg. Chem.*, 1999, 38, 3609-3620.