Supplementary Information

Polarized Fluorescence of a Crystal having Uniaxially Oriented Molecules by a Carbazole-diyl-bridged Macrocage

 Kentaro Yamaguchi, ${ }^{\text {b }}$ and Wataru Setaka*,a,d
a.Division of Applied Chemistry, Faculty of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
b. Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri
University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan.
c.Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
d.Research Center for Hydrogen Energy-Based Society (ReHES), Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
E-mail: wsetaka@tmu.ac.jp

(Total 19 pages including this cover page)

1. Experimental Procedure
2. Copies of NMR and HRMS Spectra for New Compounds
3. Details of X-ray Crystallography
4. Details of Solid-state 2H NMR Study of C18Car- d_{6}
5. Details of Fluorescence Study
6. Details of DFT Calculations

1. Experimental Procedure

All reactions were conducted under an argon atmosphere. The chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are based on the residual solvent resonances, except for ${ }^{29} \mathrm{Si} \mathrm{NMR}$, in which the chemical shifts were referenced to external tetramethylsilane. HRMS analyses were carried out by electrospray ionization (ESI) using a FT-ICR-MS system. The sample solutions for HRMS were prepared in a mixture of chloroform/methanol with a small amount of NaI. Preparatory GPC was carried out using a recycling preparative chromatograph; chloroform stabilized with ethanol was used as the eluent. Fluorescence studies in solution were carried out with samples thoroughly degassed by several freeze-pump-thaw sequences. Solid state ${ }^{2} \mathrm{H}$ NMR were recorded using quadrupolar echo pulse sequences. Commercially available reagents were used without further purification.

Synthesis of 9-Methyl-2,7-bis(trimethylsilyl)carbazole (TMSCar) A solution of 9-Methyl-2,7dibromocarbazole $(0.85 \mathrm{~g}, 2.51 \mathrm{mmol})$ dissolved in tetrahydrofuran (50 mL) was prepared. Subsequently, n-BuLi solution (1.6 M in hexane, 3.5 mL , 2.2 equiv.) was added slowly at $-78^{\circ} \mathrm{C}$ with stirring for 10 min . Trimethylchlorosilane ($0.70 \mathrm{~g}, 23.6 \mathrm{mmol}$) was then added as the temperature of the reaction was slowly raised to room temperature, and stirred for 18 h . The mixture was extracted with hexane and volatile materials were removed in vacuo. After column chromatography purification of crude products, the pure compound, TMSCar $(0.60 \mathrm{~g}, 1.84 \mathrm{mmol})$, was obtained as colorless crystals with 73% yield. TMSCar: mp $117-118{ }^{\circ} \mathrm{C}$; a white solid; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.37\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cz}-H)$, $7.54(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Cz}-H), 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cz}-H) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta-0.7(6 \mathrm{C}), 29.0$ (1C), 113.1 (2C), 119.7 (2C), 123.2 (2C), 123.5 (2C), 137.8 (2C), 140.7 (2C) ; ${ }^{29} \mathrm{Si}^{\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 99\right.}$ $\mathrm{MHz}) \delta-3.2$; HRMS (ESI positive) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NSi}_{2} \mathrm{Na}: 348.15742\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: 348.15744 $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Synthesis of 9-Methyl-2,7-bis(tri-9-decenylsilyl)carbazole (2) The same procedure in the synthesis of TMSCar from 9-Methyl-2,7-dibromocarbazole (3.33 g, 9.82 mmol), tetrahydrofuran
$(60 \mathrm{~mL}), n$-BuLi solution (1.6 M in hexane, $13.5 \mathrm{~mL}, 2.2$ equiv.), and tris(9-decenyl)chlorosilane $(9.50 \mathrm{~g}, 23.6 \mathrm{mmol})$ was performed for the production of 2,7-Bis(tri-9-decenylsilyl)-9-methylcarbazole. The product $(3.50 \mathrm{~g}, 3.27 \mathrm{mmol})$ was obtained as a colorless oil in 30% yield. $\mathbf{2}$: a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.85-0.95(\mathrm{~m}, 12 \mathrm{H}), 1.30-1.38(\mathrm{~m}, 72 \mathrm{H}), 2.06(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 12 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 4.95(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 6 \mathrm{H}), 5.01(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 6 \mathrm{H}), 5.83(\mathrm{ddt}, J=17.0$, $10.0,7.0 \mathrm{~Hz}, 6 \mathrm{H}), 7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cz}-H), 7.53(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Cz}-H), 8.10(\mathrm{~d}, 7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cz}-H)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 12.7$ (6C), 23.9 (6C), 28.9 (6C), 28.9 (1C), 29.2 (6C), 29.2 (6C), 29.3 (6C), 29.4 (6C), 33.8 (6C), 114.1 (6C), 116.1 (2C), 119.6 (2C), 123.7 (2C), 124.8 (2C), 135.7 (2C), 139.2 (6C), 139.3 (2C); ${ }^{29} \mathrm{Si}$ NMR $\left(\mathrm{CDCl}_{3}, 99 \mathrm{MHz}\right) \delta-1.2$; HRMS (ESI positive) calcd for $\mathrm{C}_{73} \mathrm{H}_{123} \mathrm{NSi}_{2} \mathrm{Na}: 1092.90863\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: $1092.90874\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Synthesis of Molecular Gyrotop C18Car and its isomer C18iCar A solution of 2,7-(tri-7-octenylsilyl)-9-methylcarbazole (2) $(0.960 \mathrm{~g}, 0.90 \mathrm{mmol})$ in dichloromethane $(200 \mathrm{~mL})$ was added to a dichloromethane $(700 \mathrm{~mL})$ solution of first-generation Grubbs' catalyst ($0.05 \mathrm{~g}, 0.06 \mathrm{mmol}$) dropwise while stirring for 12 h . The mixture was further stirred for another 12 h . The volatile materials were removed in vacuo, and the catalyst was removed from the toluene-soluble fraction by column chromatography. The reaction mixture was then added with toluene $(15 \mathrm{~mL})$ and placed in an autoclave together with $10 \% \mathrm{Pd} / \mathrm{C}(0.030 \mathrm{~g})$. Subsequently, hydrogen gas (3 atm) was introduced. The mixture was left for 72 h , and then filtered to remove the Pd / C. The fractions containing C18Car and C18iCar were collected separately by GPC (chloroform), and the solvents were evaporated. The pure compound C18Car ($0.030 \mathrm{~g}, 0.033 \mathrm{mmol}, 3.0 \%$ yield) was obtained as colorless crystals by recrystallization from THF/methanol (4:1). Pure compound C18iCar (0.340 g, $0.34 \mathrm{mmol}, 34 \%$ yield) was obtained without further purification. C18Car: colorless crystals; mp $220-221{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.81-0.84(\mathrm{~m}, 12 \mathrm{H}), 1.16-1.34(\mathrm{~m}, 96 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-$ $\left.\mathrm{CH}_{3}\right), 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cz}-H), 7.53(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Cz}-H), 8.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cz}-H) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 13.0(6 \mathrm{C}), 23.3$ (6C), 28.2 (6C), 28.6 (6C), 28.7 (1C), 29.4 (6C), 29.5 (6C), 29.9 (6C), 29.9(6C) 32.8 (6C), 116.7 (2C), 119.5 (2C), 123.6 (2C), 125.2 (2C), 135.3 (2C), 139.2 (2C); ${ }^{29} \mathrm{Si}$ NMR $\left(\mathrm{CDCl}_{3}, 99 \mathrm{MHz}\right) \delta-0.7$; HRMS (ESI positive) calcd for $\mathrm{C}_{67} \mathrm{H}_{117} \mathrm{NSi}_{2} \mathrm{Na}$:
$1014.86168\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: $1014.86160\left(\mathrm{M}+\mathrm{Na}^{+}\right)$. C18iCar: a colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 0.70-0.76(\mathrm{~m}, 4 \mathrm{H}), 0.80-1.00(\mathrm{~m}, 8 \mathrm{H}) 1.15-1.25(\mathrm{~m}, 32 \mathrm{H}), 1.26-1.46(\mathrm{~m}, 64 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 7.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cz}-H), 7.50(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Cz}-H), 8.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cz}-H) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 12.1,13.8,23.5,23.6,27.3,27.6,28.1,28.2,28.5,28.5,28.9,28.9,29.0$, $29.0,29.4,29.5,29.6,33.3,33.6,113.8$ (2C), 119.6 (2C), 123.1 (2C), 124.3 (2C), 135.5 (2C), 140.7 (2C); ${ }^{29} \mathrm{Si}$ NMR $\left(\mathrm{CDCl}_{3}, 99 \mathrm{MHz}\right) \delta-0.6$; HRMS (ESI positive) calcd for $\mathrm{C}_{67} \mathrm{H}_{117} \mathrm{NSi}_{2} \mathrm{Na}$: $1014.86168\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: $1014.86171\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Synthesis of Deuterated Molecular Gyrotop C18Car- d_{6} Deuterated molecular gyrotop C18Car- d_{6} was synthesized using the same procedure as C18Car. C18Car- d_{6} : colorless crystals; mp 221-222 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.75-0.85(\mathrm{~m}, 12 \mathrm{H}), 1.10-1.38(\mathrm{~m}, 96 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-H) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 13.1$ (6C), 23.3 (6C), 28.3 (6C), 28.7 (6C), 29.4 (6C), 29.5 (6C), 29.9 (6C), 29.9 (6C), 32.9 (6C), $116.3(\mathrm{t}, J=23.5 \mathrm{~Hz}, 2 \mathrm{C}), 119.2(\mathrm{t}, J=23.5 \mathrm{~Hz}, 2 \mathrm{C}), 123.5(\mathrm{~s}, 2 \mathrm{C})$, $124.8(\mathrm{t}, J=23.5 \mathrm{~Hz}, 2 \mathrm{C}), 135.0(\mathrm{~s}, 2 \mathrm{C}), 139.2(\mathrm{~s}, 2 \mathrm{C}) ;{ }^{29} \mathrm{Si} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 99 \mathrm{MHz}\right) \delta-0.7$; HRMS (ESI positive) calcd for $\mathrm{C}_{67} \mathrm{H}_{111} \mathrm{D}_{6} \mathrm{NSi}_{2} \mathrm{Na}: 1020.89934\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found: $1020.89960\left(\mathrm{M}+\mathrm{Na}^{+}\right)$

2. Copies of NMR and HRMS Spectra for New Compounds

a. Spectra of TMSCar

Fig. S1. ${ }^{1} \mathrm{H}$ NMR spectrum of TMSCar in CDCl_{3}.

Fig. S2. ${ }^{13} \mathrm{C}$ NMR spectrum of TMSCar in CDCl_{3}.

Fig. S3. HRMS spectrum of TMSCar (ESI, positive). Top: obsd. Bottom: sim.
b. Spectra of 2

Fig. S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}.

Fig. S5. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2}$ in CDCl_{3}.

Fig. S6. HRMS spectrum of 2 (ESI, positive). Top: obsd. Bottom: sim.

c. Spectra of C18Car

Fig. S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C 1 8 C a r}$ in CDCl_{3}.

Fig. S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{C 1 8 C a r}$ in CDCl_{3}.

Fig. S9. HRMS spectrum of C18Car (ESI, positive). Top: obsd. Bottom: sim.

d. Spectra of C18Cari

Fig. S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{C 1 8 C a r i}$ in CDCl_{3}.

Fig. S11. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{C 1 8 C a r i}$ in CDCl_{3}.

Fig. S12. HRMS spectrum of C18Cari (ESI, positive). Top: obsd. Bottom: sim.

e. Spectra of C18Car- d_{6}

Fig. S13. ${ }^{1} \mathrm{H}$ NMR spectrum of C18Car- d_{6} in CDCl_{3}.

Fig. S14. ${ }^{13} \mathrm{C}$ NMR spectrum of C18Car- d_{6} in CDCl_{3}.

Fig. S15. HRMS spectrum of bromosilylthiophene C18Car- d_{6} (ESI, positive). Top: obsd. Bottom: sim.

3. Details of X-ray Crystallography

3-1. Crystal Data

Table S1. Crystal Data

Sample	C18Car	TMSCar
CCDC \#	1825557	1825558
Empirical formula	C67 H117 N Si2	C19 H27 N Si2
Crystal shape	prism	prism
Crystal color	colorless	colorless
Crystal size	$0.40 \times 0.40 \times 0.20 \mathrm{~mm}^{3}$	$0.27 \times 0.22 \times 0.19 \mathrm{~mm}^{3}$
Formula weight / $\mathrm{g} \mathrm{mol}^{-1}$	992.79	325.59
Crystal system	Monoclinic	Monoclinic
Space group	$C 21 / c$	$P 2{ }_{1} / n$
Z	4	4
Calculated density	$1.017 \mathrm{Mg} / \mathrm{m}^{3}$	$1.093 \mathrm{Mg} / \mathrm{m}^{3}$
a	34.673(6) \AA	15.104(7) \AA
b	12.090(2) \AA	$6.317(4) \AA$
c	17.728 (3) \AA	20.8662(10) \AA
Cell parameter α	90°	90°
β	$119.214(2)^{\circ}$	$96.345(11)^{\circ}$
γ	90°	90°
V	$6486.4(19) \AA^{3}$	1978.7(16) \AA^{3}
F(000)	2216	704
Absorption coefficient	$0.091 \mathrm{~mm}^{-1}$	$0.177 \mathrm{~mm}^{-1}$
θ range for collection (deg)	1.346 to 27.369°	3.105 to 27.516°
Index ranges	$\begin{gathered} -32<=\mathrm{h}<=43,-14<=\mathrm{k}<=14, \\ -21<=1<=19 \end{gathered}$	$\begin{gathered} -19<=\mathrm{h}<=19,-5<=\mathrm{k}<=8, \\ -27<=1<=27 \end{gathered}$
Reflections collected	16192	18281
Independent reflections	$6658[\mathrm{R}(\mathrm{int})=0.0342]$	$4510[\mathrm{R}(\mathrm{int})=0.0974]$
Completeness	99.9 \%	99.5 \%
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.291	0.889
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.1083, \mathrm{wR} 2=0.3444$	$\mathrm{R} 1=0.0487, \mathrm{wR} 2=0.1114$
R indices (all data)	$\mathrm{R} 1=0.1726, \mathrm{wR} 2=0.3993$	$\mathrm{R} 1=0.0605, \mathrm{wR} 2=0.1140$
Largest diff. peak and hole	1.050 and -0.349 e. \AA^{-3}	0.263 and -0.322 e. \AA^{-3}

3-2. Disorder of Carbazole Moieties in C18Car

(a)

(b)

Fig. S16. Disorder in C18Car: (a) equatorial view; (b) axial view.

4. Details of Solid-state 2H NMR Study of C18Car- d_{6}

Solid-state ${ }^{2} \mathrm{H}$ NMR was employed to observe dynamics of the carbazole moiety in a crystalline state of $\mathbf{C 1 8 C a r}-\boldsymbol{d}_{6}$. In this spectra, the molecular motion of the deuterated moieties can be observed selectively. Fig. S17 shows temperature dependent solid-state ${ }^{2} \mathrm{H}$ NMR spectra of the powdered samples. Broad signals due to quadrupole coupling, called a Pake doublet, were observed, indicating the rotor was almost static.

Fig. S17. Temperature dependent solid-state ${ }^{2} \mathrm{H}$ NMR spectra of C18Car- $\boldsymbol{d}_{\mathbf{6}}$: (a) 330 K , (b) 320 K , (c) 310 K , (d) 300 K , (e) 290 K .

5. Details of Fluorescence Study

4-1. Fluorescence Parameters

Table S2. Fluorescence Parameters of Silylcarbazoles

compound		$\lambda_{\text {abs }} / \mathrm{nm}$	$\lambda_{\text {emi }} / \mathrm{nm}$	Storks Shift $\Delta \lambda / \mathrm{nm}$	Quantumn Yield Φ_{f}	Lifetime τ / ns
Solution	TMSCar	354	360	6	0.76	15.05
Solution	C18Car	354	361	7	0.65	15.40
Solid state	TMSCar	370	386	16	0.28	10.53
	C18Car	364	381	17	0.08	6.61

4-2. Details of Solid-State Fluorescence Studies

Fig. S18. Thickness dependent fluorescence spectra from a single crystal: C18Car (left), TMSCar (right).

Fig. S19. Excitation spectra for powderd fluorescence: C18Car (red line, $\lambda_{a b s}=364 \mathrm{~nm}$), TMSCar (blue line, $\lambda_{a b s}=370 \mathrm{~nm}$).
(a)

(b)

Fig. S20. Orientation mapping of the single crystal determined by X-ray diffraction: (a) C18Car, (b) TMSCar.

Fig. S21. Polarized fluorescence spectra from a single crystal of (a) C18Car and (b) TMSCar. Values of the angles were stated in the caption of Fig. 3. [Note: These spectra include optical properties of the polarizer, such as the wavelength dependence of extinction ratios. Thus, a discussion on the spectral shapes is futile. However, the intensities of fluorescence that depend on the angles at certain wavelengths reflect the magnitudes of their polarity.]

5. Details of DFT Calculations

a. Optimized Structure, Total Energy, Excitation energies, and Direction of Transition

 Moment of 2,7-trimethylsilyl-9-methylcarbazoleAll calcularion were carried out using Gaussian 16 (Revision A.03) program packages ${ }^{\text {S1 }}$ on Fujitsu PRIMERGY CX400 supercomputer at Nagoya University ICTS and the Research Center for Computational Science, Okazaki, Japan

S1: Gaussian 16, Revision A.03,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

b. Optimized Structure, Total Energy, Excitation energies, and Direction of Transition Moment of 2,7-trimethylsilyl-9-methylcarbazole at B3LYP/6-31G(d,p) level

Table S3. Optimized Structural Coordinate and its Total Energy at B3LYP/6-31G(d,p) level total energy: $=-1374.1768645$ hartree $($ NImag $=0)$

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	
			X Y	Z
1	60	6.109633	-0.787396	-1.389467
2	60	-6.101979	-0.774386	-1.444270
3	60	-5.544346	2.070938	-0.378127
4	60	5.548690	2.058929	-0.327735
5	60	3.036465	-1.528112	0.319611
6	60	3.455853	-0.194243	0.083977
7	60	1.693464	-1.881744	0.381447
8	60	2.480572	0.798921	-0.089151
9	60	0.003356	2.670150	-0.426835
10	6	-3.460214	-0.186717	0.052769
11	6	-3.045879	-1.521493	0.292174
12	6	-2.481257	0.804321	-0.111553
13	6	0.719211	-0.891786	0.208690
14	6	1.128826	0.448277	-0.019240
15	6	-1.704263	-1.878032	0.366122
16	6	-0.726342	-0.890194	0.202167
17	6	-1.130953	0.450766	-0.029444
18	6	6.120605	-0.243300	1.651304
19	6	-6.139002	-0.229598	1.596171
20	1	0.6 .678911	-0.527846	-2.362329
21	1	-5.662010	-0.515976	-2.413290
22	1	-5.091793	2.376462	-1.327699
23	1	7.187822	-0.597150	-1.438784
24	1	-7.179268	-0.581810	-1.503266
25	1	5.969935	-1.864048	-1.244855
26	1	5.105396	2.365619	-1.281290
27	1	-6.611884	2.311479	-0.432858
28	1) -5.965924	-1.851309	-1.298211
29	1	00.009836	2.880035	-1.504240
30	1	0.617198	2.297163	-0.372771
31	1	-5.110714	2.689122	0.415370

32	1	0	3.783597	-2.306767	0.454380
33	1	0	1.403684	-2.913903	0.559005
34	1	0	2.771438	1.827244	-0.281673
35	1	0	-3.795888	-2.298519	0.420191
36	1	0	-0.881269	3.135075	0.014473
37	1	0	-2.768174	1.833256	-0.306707
38	1	0	-1.418330	-2.910813	0.546279
39	1	0	5.109246	2.677898	0.461944
40	1	0	0.883641	3.133474	0.024773
41	1	0	-7.216665	-0.033707	1.558975
42	1	0	7.198993	-0.049817	1.623786
43	1	0	5.980578	-1.302957	1.890330
44	1	0	-6.003490	-1.289519	1.836622
45	1	0	-5.721411	0.351462	2.425232
46	1	0	5.696917	0.338550	2.476709
47	7	0	0.000365	1.252045	-0.143071
48	14	0	-5.305655	0.222358	-0.043931
49	14	0	5.302977	0.210809	0.003902

Table S4. Ground to excited state transition electric dipole moments (Au) at B3LYP/6-31G(d,p) level

state	X	Y	Z		
1	-0.0001	-0.5713	0.0005	0.3263	0.0309
2	-1.9193	0.0000	0.0000	3.6838	0.3913
3	2.1976	-0.0000	-0.0000	4.8293	0.6112
4	-2.0115	0.0001	0.0000	4.0463	0.5170
5	-0.0001	-0.3904	0.0104	0.1525	0.0198

Table S5. Excitation energies and oscillator strengths at B3LYP/6-31G(d,p) level
Excited State 1: Singlet-A $3.8635 \mathrm{eV} 320.91 \mathrm{~nm} \mathrm{f}=0.0309<\mathrm{S}^{*} * 2>=0.000$ $87->90 \quad-0.16765$ HOMO(88) -> LUMO(89) 0.68236
Excited State 2: Singlet-A $\quad 4.3356 \mathrm{eV} 285.97 \mathrm{~nm} \mathrm{f}=0.3913<\mathrm{S}^{*} * 2>=0.000$ $87->89 \quad 0.63561$ $88->90 \quad 0.28873$
Excited State 3: Singlet-A $5.1658 \mathrm{eV} 240.01 \mathrm{~nm} \mathrm{f}=0.6112<\mathrm{S}^{* *} 2>=0.000$ $85->90 \quad-0.10104$
$86->89 \quad 0.25968$
87 -> $89 \quad-0.17004$
$87->91 \quad-0.25071$
88 -> $90 \quad 0.52120$ 88 -> $92-0.21507$
Excited State 4: Singlet-A $5.2148 \mathrm{eV} 237.75 \mathrm{~nm} \mathrm{f}=0.5170<\mathrm{S}^{*} * 2>=0.000$ 86 -> $89 \quad 0.53904$
$87->89 \quad 0.21513$
$87->91 \quad-0.25168$ 88 -> $90-0.29784$
Excited State 5: Singlet-A $5.2996 \mathrm{eV} 233.95 \mathrm{~nm} \mathrm{f}=0.0198<\mathrm{S}^{*} * 2>=0.000$ 86 -> 920.10078
$87->90 \quad 0.56127$
$87->92 \quad-0.13577$
88 -> $89 \quad 0.11681$
88 -> $91 \quad 0.35557$

