Supporting Information

P-N Heterointerface-determined Acetone Sensing Characteristics in α-MoO₃@NiO Core@Shell Nanobelts

Keng Xu^{*a}, Shuailing Duan^a, Qian Tang^a, Qiang Zhu^{*b}, Wei Zhao^a, Xing Yu^a, Yong Yang^a, Ting Yu^a, Cailei

Yuan*a

aJiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Key Laboratory of Photoelectronics and Telecom

munication, School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, Jia

ngxi, P.R. China

^bDepartment of Physics, Yunnan University, Kunming 650091, Yunnan, P. R. China

Corresponding Author. Tel:0791-88120370;

Email address: xukeng@163.com (Keng Xu)

qiangzhu@ynu.edu.cn (Qiang Zhu)

clyuan@jxnu.edu.cn (Cailei Yuan)

1. EXPERIMENTATION

1.1. Synthesis of 1D α-MoO₃ nanobelts.

All of the reagents used in the experiment were of analytical reagent grade, which were preceded without further purification. The 1D α -MoO₃ nanobelts were synthesized by a hydrothermal treatment according to previous studies¹. In a typical procedure, 0.96 g of Mo powder was added in a mixture solution consisted of 20 mL of 30 wt. % H₂O₂ and 20 mL of H₂O. The mixed solution was stirred for 12 h at 25 °C. After that, a transparent yellow solution was obtained and poured into a Teflon-lined stainless-steel autoclave followed by a hydrothermal treatment at 180 °C for 24 h. And then the white precipitate was collected by vacuum filtration which was then washed repeatedly at least seven times.

1.2. Synthesis of α-MoO₃@NiO nanobelts.

α-MoO₃@NiO nanobelts were obtained by a facile method without any surfactant, which was also achieved by a hydrothermal and subsequently sintering treatment. Typically, 50 mg of as-prepared 1D α-MoO₃ nanobelt powder was added in to 30 ml ethanol solution by the assistance of ultrasonication. Then, a certain amount of Ni(NO₃)₂·6H₂O and hexamethylenetetramine (HMT) was added. This as-obtained solution was then poured into a Teflon-lined stainless-steel autoclave. After hydrothermally treated at 120 °C for 4 h, a green precursor was collected by vacuum filtration which was then washed repeatedly at least seven times. The added amount of Ni(NO₃)₂·6H₂O and HMT was 54 and 210 mg, 72.7 and 280 mg, respectively, whose final products were named as α-MoO₃@NiO-1 and α-MoO₃@NiO-2, respectively. Finally, the α-MoO₃@NiO nanobelts were obtained by annealing the precursor at 500 °C for 2h in air. For comparison, pristine α-MoO₃ nanobelts and NiO nanospheres prepared during these processes were obtained which named as α-MoO₃ and NiO, respectively.

1.3. Sensor fabrication and measurements. The sensor fabrication processes were similar to our previous work^{2, 3}. In a typical process, 5 mg precursor was uniformly dispersed in ethanol in a weight ratio of 5:1 by ultrasonication for 15 min to form a paste. Then, a ceramic flat placed with Pt interdigitated electrodes and Pt

heater was chose as substrate. The as-prepared paste was coated uniformly onto the substrate. Before gas-sensing measurements, the as-obtained gas sensor was annealed at 500 °C for 2 h and stabilized at 300 °C for 3 days in air. Then, gas-sensing measurements were carried out on a static gas-sensing analysis system (Wuhan Hua Chuang Rui Ke Co. Ltd., China). This system contains a test chamber (30 L in volume) and a personal computer as shown in Fig. S1. During the gas-sensing tests, the as-prepared sensors were mounted in the chamber. A given amount of target gas was introduced into this chamber by injecting their corresponding liquid using a microsyringe which was rapidly vaporized by a heater. After a few minutes, the ambient air (humidity: $18\sim22$ %) was introduced again to restore base resistance by lifting the sealed chamber. During these processes, the resistance of the sensors was continuously recorded by the personal computer. Based on a regular basis, the gas-sensing response was defined as R_g/R_a or R_a/R_g , where R_g is the resistance of sensors in the present of detecting gases and R_a is the resistance in air.

1.4. Characterization. The prepared products were characterized by means of the X-ray diffraction (XRD) (Philips X'pert X-ray diffractometer with Cu $K_{\alpha 1}$ radiation). The structure was characterized by the field emission scanning electron microscopy (ZEISSEVO) and transmission electron microscopy (JEM-2100 microscope), which was operated at an acceleration voltage of 20 kV and 200 kV, respectively. With a probe size of 0.2 nm, Energy Dispersive X-ray Spectroscopy (EDS) was performed. The pore-size-distribution and Brunauer–Emmett–Teller (BET) surface area of these samples were analyzed by N₂ adsorption/desorption isotherms (BELSORP-mini II) at 77 K.

2. FIGURES

Figure S1. Schematic diagram of the applied gas-sensing measurement system. The right is the structure of the sensor and the morphology of sensing film (NiO@ α -MoO₃-2) on the surface of sensor.

Figure S2. SEM images of pristine NiO.

Figure S3. (a-b) Low-resolution TEM images of pristine NiO, (c) the corresponding SAED pattern, (d) High-resolution TEM image.

Figure S4. Typical response and recovery curve of α -MoO₃, α -MoO₃@NiO-1, α -MoO₃@NiO-2 and NiO to 100 ppm acetone at their optimal operating temperatures.

Figure S5. The relationship between relative humidity and response.

Figure S6. Thickness measurement of α -MoO₃ nanobelts.

3. Calculations on space charge layers at α-MoO₃@NiO PN heterointerface.

The width of the space charge layers induced by the PN heterojunctions created between α -MoO₃ and NiO can be calculated using eqs 1 and 2 respectively,

$$\omega_{MoO_3} = \left\{ \frac{2\varepsilon_{MoO_3} \Delta \varphi}{q} \times \left[\frac{N_{NiO}}{N_{MoO_3} \times (N_{MoO_3} + N_{NiO})} \right] \right\}^{1/2}$$
(1)

$$\omega_{NiO} = \left\{ \frac{2\varepsilon_{NiO}\Delta\phi}{q} \times \left[\frac{N_{MoO_3}}{N_{NiO} \times (N_{NiO} + N_{MoO_3})} \right] \right\}^{N2}$$
(2)

where ε_{MoO3} is $11.2 \times 10^{-10} \text{ F} \cdot \text{m}^{-1.4} \Delta \varphi$ (=2.5 eV) is the contact potential difference between α -MoO₃ and NiO, and N_{MoO3} and N_{NiO} are the electron and hole concentrations, respectively (N_{MoO3} = 1.5×10^{18} and N_{NiO} = $2.24 \times 10^{18} \text{ cm}^{-3}$)^{5, 6}. The calculated ω_{MoO3} is 96 nm. Since the width of α -MoO₃ (=20-30 nm) was less than 2

 ω_{MoO3} (=35 nm), the α -MoO₃ nanowires could be depleted completely.

REFERENCES

(1) Yao, Y.; Xu, N.; Guan, D. D.; Li, J. T.; Zhuang, Z. C.; Zhou, L.; Shi, C. W.; Liu, X.; Mai, L. Q. Facet-selective deposition of FeO_x on α -MoO₃ nanobelts for lithium storage. *ACS Appl. Mater. Interfaces* 2017, 9, 39425-39431.

(2) Xu, K.; Yang, L.; Yang, Y.; Yuan, C. L. Improved ethanol gas sensing performances of a ZnO/Co₃O₄ composite induced by its flytrap-like structure. *Phys. Chem. Chem. Phys.* 2017, 19, 29601-29607.

(3) Xu, K.; Zou, J. P.; Tian, S. Q.; Yang, Y.; Zeng, F. Y.; Yu, T.; Zhang, Y. T.; Jie, X. M.; Yuan, C. L. Single-crystalline porous nanosheets assembled hierarchical Co₃O₄ microspheres for enhanced gas-sensing properties to trace xylene. *Sens. Actuators B: Chem.* 2017, 246, 68-77.

(4) Kong, H.; Ahn, E.; Ryu, S.; Kim, J. W.; Cho, J.; Park, S.; Kim, D.; Jeen, G.-S.; Lee, I.; Jeen, H. Growth and physical properties of large MoO₃ single crystals. *J. Mater. Sci.* 2016, 51, 8928-8934.

(5) Nadkarni, G. S.; Simmons, J. G. Determination of the defect nature of MoO₃

films using dielectric - relaxation currents. J. Appl. Phys. 1972, 43, 3650-3656.

(6) Tyagi, M.; Tomar, M.; Gupta, V. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode. *Mater. Res. Bull.* 2015, 66, 123-131.