Supporting Information A Fast and Controlled Growth of Two-dimensional Layered ZrTe₃ Nanoribbons by

Chemical Vapor Deposition

Xu Yu,^{†,‡, #} Xiaokun Wen,^{†,‡, #}, Wenfeng Zhang, ^{†,‡,} * Li Yang, ^{†,‡,} Hao Wu, ^{†,‡,} Xun Lou, ^{†,‡} Zijian Xie, ^{†,‡}Yuan Liu, ^{†,‡} and Haixin Chang^{†,‡}

[†]Center for Joining and Electronic Packaging, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PRC.

[‡]Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, PRC.

[#]Theses authors contributed equally to this work.

E-mail: wfzhang@hust.edu.cn

shows the Te and Zr chemical composition (\sim 1:3).

Figure S2. (a) SEM observation of the 2D-ZrTe₂ grown at 800 °C-1050 °C; (b) the corresponding

EDX analysis, which indicates that Te, Zr chemical composition is ~1:2 (inset).