Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Fe induced MoO₃ nanowires along [110] direction and their fast

selective adsorption of quasi-phenothiazine dyes

Ying Cao^{a,e}, Huixiang Wang^{a,*}, Xiaobo Ren^{a,e}, Fan Li^d, Jing Wang^{a,e}, Ruimin Ding^a, Liancheng Wang^a, Jianbo Wu^d, Zhong Liu^{b,c,*}, Baoliang Lv^{a,*}

a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.

b Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences. Xining 810008, China.

c Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province. Xining 810008, China.

d State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

e University of Chinese Academy of Sciences, Beijing 100049, China

*E-mail: wanghx@sxicc.ac.cn; lbl604@sxicc.ac.cn; liuzhong@isl.ac.cn

Fax: +86-351-4041153; Tel: +86-351-4063121

Fig. S1⁺. (a) The SEM image, (b) Typical TEM image and (c) HRTEM pattern, (d) SAED image of MoO₃ NRs.

Fig. S2† The SEM images of samples obtained with different cations: (a) NaNO₃, (b) Mg(NO₃)₂· $6H_2O$, (c) Co(NO₃)₂· $6H_2O$, (d) Ni(NO₃)₂· $6H_2O$

Tab. S1' The for facility of different cations.											
element	Mo ⁶⁺	Fe ³⁺	Mg ²⁺	Ni ²⁺	Co ²⁺	Na ⁺					
ion		0.64		0.70 %	0.74	0.05					
radius	0.62A	0.64A	0.65A	0.72A	0.74A	0.95A					

Tab. S1⁺ The ion radius of different cations

Fig. S3⁺ The molecular structure of RhB and MO.

Adsorbents	Dyes	Q _{max} (mg/g)	Q' (mg/(g ∙min))	Adsorption time (min)	Removal efficiency (%)	BET (m ² ·g ⁻¹)	Reference	
	RhB	15.9	1.59	10	97.9			
α -MoO ₃ microspheres	MB	0	0	0	0	17.7	[1]	
	мо	0	0	0	0			
α-MoO₃ nanoparticles	MB	37.5	0.13	300	60.0	0.7	[2]	
α -MoO ₃ milled phases	MB	62.5	1.25	50	100	7.0	[2]	
α-MoO₃ nanowires	MB	13.0	0.15	90	100	-	[3]	
α -MoO ₃ nanobelts	MB	8.5	0.14	60	30.0	11.7	[4]	
α-MoO₃ nanobelts	MB	20.0	0.33	60	99.0	-	[5]	
α-MoO₃/polyaniline	RhB	36.3	0.605	60	75.2	27.3	[6]	
	MB	144.3	28.86	5	100			
	ТВ	138.0	27.60	5	97.0		Our work	
5 14 0 1994	AI	141.0	28.20	5	99.0	174.7		
Fe-MoO ₃ NWS	AO	141.0	28.20	5	99.0			
	RhB	33.7	1.685	20	22.5			
	МО	14.1	0.705	20	9.4			
MoO ₃ NRs	MB	12.3	2.46	5	41.0	21.6		

Tab. S2† The adsorption performances of some reported adsorbents of MoO₃ in the selective adsorption of dyes.

Methylene blue (MB), Toluidine blue (TB), Azure I (AI), Acridine orange (AO), Rhodamine B (RhB), Methyl orange (MO)

Fig. S4⁺ The recycling experiments for MB adsorption on the Fe-MoO₃ NWs.

References

- [1] M. Wang, X. Song, X. Cheng, X. Zhou, X. Zhang, Z. Cai, Y. Xu, RSC Adv. 2015, 5, 85248–85255.
- [2] M. Santos-Beltrán, F. Paraguay-Delgado, R. García, W. Antúnez-Flores, C. Ornelas-Gutiérrez, A.

Santos-Beltrán, J. Mater. Sci-Mater. El. 2017, 28, 2935-2948.

- [3] T. Liu, B. Li, Y. Hao, Z. Yao, Chem. Eng. J. 2014, **244**, 382-390.
- [4] Y.F. Zhou, K.Bi, L.Wan, X.Ji, C.Wen, K. Huang, C. Liang, Z.B. Sun, D.Y. Fan, H.J. Yang, Y.G. Wang, M.

Lei., Enhanced adsorption and photocatalysis properties of molybdenum oxide ultrathin nanobelts,

- Mater. Lett. 2015, 154, 132-135
- [5] Y. Ma, Y. Jia, Z. Jiao, L. Wang, M. Yang, Y. Bi, Mater. Lett. 2015, 157, 53-56
- [6] S. Dhanavel, E. A. K. Nivethaa, K. Dhanapal, V. K. Gupta, V. Narayanan, A. Stephen, RSC Adv.
 2016, 6, 28871-28886.