Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019

Influence of organic cations on π -stacking of semiquinone radical anions

Supplement

Krešimir Molčanov^{*}a, Valentina Milašinović^a, Nives Ivić^a, Vladimir Stilinović^b, Dinko Kolarić^c, Biserka Kojić-Prodić^a

^a Rudjer Bošković Institute, Bijenička 54, Zagreb HR-10000, Croatia

^b Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia

^c Special Hospital for Medical Rehabilitation, Daruvarske Toplice, Julijev park 1, Daruvar HR-43500, Croatia

e-mail: kmolcano@irb.hr

Figure S1 ORTEP-3 drawing of Cl_4Q radical anion in $1 \cdot Cl_4Q$. Displacement ellipsoids are drawn for the probability of 50 %.

Figure S2 ORTEP-3 drawing of Br_4Q radical anion in $1 \cdot Br_4Q$. Displacement ellipsoids are drawn for the probability of 50 %.

Figure S3 ORTEP-3 drawing of Cl_4Q radical anion in $2 \cdot Cl_4Q$. Displacement ellipsoids are drawn for the probability of 50 %.

Figure S4 ORTEP-3 drawing of Cl_4Q radical anion in $3 \cdot Cl_4Q$. Displacement ellipsoids are drawn for the probability of 50 %.

Figure S5 ORTEP-3 drawings of two symmetry-inequivalent partially charged Cl_4Q radicals in 4_2 ·(Cl_4Q)₃. Displacement ellipsoids are drawn for the probability of 50 %.

Figure S6 ORTEP-3 drawings of two symmetry-independent Br_4Q radical anions (A and B, respectively) in $4_2 \cdot (Br_4Q)_2$. Displacement ellipsoids are drawn for the probability of 50 %.

Figure S7 ORTEP-3 drawings of a) and b) two symmetry-independent Cl_4Q radical anions and c) neutral molecule of Cl_4Q in $5_4 \cdot (Cl_4Q)_5$. Displacement ellipsoids are drawn for the probability of 50 %.

Figure S8 ORTEP-3 drawing of *N*-methylpyrazinium cation in $1 \cdot \text{Cl}_4\text{Q}$. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S9 ORTEP-3 drawing of *N*-methylpyrazinium cation in $1 \cdot Br_4Q$. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S10 ORTEP-3 drawing of *N*-methyl-2-aminopyridinium cation in $2 \cdot Cl_4Q$. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S11 ORTEP-3 drawing of *N*-methyl-3-aminopyridinium cation in $3 \cdot Cl_4Q$. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S12 ORTEP-3 drawing of a disordered *N*-methyl-4-aminopyridinium cation in $4_2 \cdot (Cl_4Q)_3$. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S13 ORTEP-3 drawing of two symmetry-independent *N*-methyl-3carboxymethylpyridinium cations in $5_4 \cdot (Cl_4Q)_5$. Displacement ellipsoids are drawn for the probability of 50 % and hydrogen atoms are shown as spheres of arbitrary radii.

Figure S14 Crystal packing of $1 \cdot Cl_4Q$ viewed in the direction [100].

Figure S15 Crystal packing of $3 \cdot Cl_4Q$ viewed in the direction [100].

Figure S16 Crystal packing of $4 \cdot (Br_4Q)_2$ viewed in the direction [100].

Figure S17 Different types of bonds in the (semi)quinone ring used for geometric correlation between bond lengths and charge of the ring shown in Figs. S18-S21.

Figure S18 Correlation between bond lengths in the semiquinone radicals and their charges, after Kistenmacher *et al.* [1]: a/c (definition is given in Fig. S17). Data for Cl₄Q radicals from accurate X-ray charge density studies [2,3] are shown as red full circles; data for for Cl₄Q radicals from this work are shown as blue full circles and data for Br₄Q radicals from this work are shown as empty black circles.

Figure S19 Correlation between bond lengths in the semiquinone radicals and their charges, after Coppens & Guru Row [4]: (a+b)/c (definition is given in Fig. S17). Data for Cl₄Q radicals from accurate X-ray charge density studies [2,3] are shown as red full circles; data for Cl₄Q radicals from this work are shown as blue full circles and data for Br₄Q radicals from this work are shown as empty black circles.

Figure S20 Correlation between C=O (*a* in Fig. S17) bond lengths of the semiquinone radicals and their charges. Data for Cl_4Q radicals from accurate X-ray charge density studies [2,3] are shown as red full circles; data for Cl_4Q radicals from this work are shown as blue full circles and data for Br_4Q radicals from this work are shown as empty black circles.

b)

Figure S21 Correlations between bond lengths in the semiquinone radicals and their charges proposed in this work: (a+b+d)/c (definition is given in Fig. S17). a) Data for Cl₄Q radicals from accurate X-ray charge density studies [2,3] are shown as red full circles and data for Cl₄Q radicals from this work are shown as blue full circles; b) data for Br₄Q radicals from this work are shown as empty black circles.

References

- 1 T. J. Kistenmacher, T. J. Emge, A. N. Bloch and D. O. Cowan, *Acta Crystallogr.*, 1982, **38**, 1193–1199.
- 2 K. Molčanov, C. Jelsch, B. Landeros, J. Hernández-Trujillo, E. Wenger, V. Stilinović and
- B. Kojić-Prodić, C. Escudero-Adan, Cryst. Growth Des., 2019, 19, 391-402.
- 3 K. Molčanov, Z. Mou, M. Kertesz, B. Kojić-Prodić, D. Stalke, S. Demeshko, A. Šantić and V. Stilinović, *Chem. Eur. J.*, 2018, 24, 8292-8297.
- 4 P. Coppens and T. N. Guru Row, Ann. N. Y. Acad. Sci., 1978, 313, 244-255.