Electronic supplementary information

Table S1. Crystal structure refinement data.

Empirical formula	$Sr_5(PO_4)_3Cu_{0.476}O_{0.83}H_x, x < 0.1$
Formula weight, g mol ⁻¹	766.6
Temperature, K	293
Wavelength, Å	0.71073
Space group	<i>P</i> 63/ <i>m</i> (No. 176)
<i>a</i> , Å	9.7993(4)
<i>c</i> , Å	7.2938(3)
<i>V</i> , Å ³	606.56(6)
Ζ	2
X-ray density, g cm ⁻³	4.197
Absorption coefficient, mm ⁻¹	23.118
2θ range, deg.	3.68 - 32.86
Limiting indices	$-14 \le h \le 14, -14 \le k \le 14, -10 \le l \le 10$
Number of variable parameters	44
Independent reflections	789
Independent reflections with $I > 3\sigma(I)$	523
R_1 (all data), $R_1 [I > 3\sigma(I)]^{a}$	0.054, 0.026
wR_1 (all data), $wR_1 [I > 3\sigma(I)]^{b}$	0.028, 0.025
ΔF max, ΔF min, e Å ⁻³	1.49, -1.97

a)
$$R_{1} = \frac{\sum ||F_{o}| - |F_{c}||}{\sum |F_{o}|}$$
. b) $wR_{1} = \frac{\sum |w(|F_{o}| - |F_{c}|)}{\sum w|F_{o}|}$.

Table S2. Atomic parameters.

Atom	Sr(1)	Sr(2)	Р	O(1)	O(2)	O(3)	O(4)	Cu
Site	4f	6h	6h	6h	12i	6h	2a	2b
SOF	1	1	1	1	1	1	0.83(4)	0.476(7)
x	2/3	0.24697(6)	0.59937(17)	0.6654(5)	0.7365(4)	0.5383(5)	0	0
У	1/3	-0.01423(6)	0.63235(16)	0.5183(5)	0.0855(4)	0.1205(5)	0	0
Ζ	-0.00016(9)	1/4	-1/4	-1/4	0.0783(5)	1/4	1/4	0
$U_{ m eq}$	0.0116(1)	0.0128(2)	0.0093(4)	0.0144(15)	0.0194(11)	0.0193(16)	0.030(4)	0.0124(7)
U_{11}	0.0117(2)	0.0129(2)	0.0101(6)	0.0173(218	0.0148(13)	0.017(2)	0.015(3)	0.0119(9)
U_{22}	0.0117(2)	0.0087(2)	0.0073(5)	0.0177(17)	0.0170(14)	0.0088(17)	0.015(3)	0.0119(9)
U_{33}	0.0114(3)	0.0144(2)	0.0122(6)	0.021(2)	0.0162(16)	0.030(3)	0.062(8)	0.0136(13)
U_{12}	0.0059(1)	0.0038(2)	0.0056(4)	0.0120(15)	0.0003(11)	0.0054(17)	0.0074(16)	0.0059(4)
U_{13}	0	0	0	0	0.0054(11)	0	0	0
U_{23}	0	0	0	0	-0.0011(11)	0	0	0

Table S3. Selected interatomic distances in Å and angles in deg.

Sr(1)-O(1)	2.575(4)	3x	P-O(2)	1.533(3)	2x
Sr(1)-O(2)	2.890(5)	3x	P-O(3)	1.542(6)	
Sr(1)-O(3)	2.576(4)	3x	Cu-O(4)	1.8235	2x
Sr(2)-O(1)	2.783(5)		Cu-O(3)	3.140(5)	6x
Sr(2)-O(2)	2.522(3)	2x	O(1)-P-O(2)	111.3(2)	2x
Sr(2)-O(2)	2.693(3)	2x	O(1)-P-O(3)	110.0(3)	
Sr(2)-O(3)	2.474(5)		O(2)-P-O(3)	107.2(2)	2x
Sr(2)-O(4)	2.4927(7)		O(2)-P-O(2)	109.6(2)	
P-O(1)	1.546(6)				

scale bar = 1 mm

(1)

Fig. S1. Optical image of the single crystals of Cu-doped strontium hydroxyapatite fixed on the sample holder parallel to magnetic field.

Analysis of the anharmonicity of $v_1(OCuO)$

The anharmonicity of v_1 (OCuO) was analyzed using equation (1) for the vibration energy of a two-atomic molecule with the Morse potential [1].

$$E/hc = v_0(n + \frac{1}{2}) - v_0\gamma(n + \frac{1}{2})^2,$$

where E/hc – energy of the vibrational level, v_0 – wavenumber of basic harmonic vibration, γ unharmonicity coefficient, n – number of the level. The Raman band energy is a difference between n = k + 1 and n = 0 levels, where k is the overtone number. The dependence of the Raman band position on n is shown in Fig. S2. The fitting yields $v_0 = 660.6(2)$ cm⁻¹, $\gamma = 0.00284(5)$.

For a two-atomic molecule the depth of the energy well $D_e = hc v_0/(4\gamma)$ and dissociation energy $E_{\text{dis}} = \Delta E - hc v$, where v- wavenumber of basic vibration. For [OCuO] this corresponds to braking of two Cu-O bonds. Taking this into account, the dissociation energy of Cu-O bond in [OCuO]⁻ can be calculated as $E_d = \frac{1}{2}E_{\text{dis}} = 346(6) \text{ kJ/mol}$.

Fig. S2. The dependence of the Raman shift of the v_1 (OCuO) basic and overtone bands on the energy level number *n*. Circles – experimental points, line – fitting.

References

1. P. M. Morse, Phys. Rev. 1929, 34, 57-64.