Exploration of relative π -electron localization in naphthalene aromatic ring by C–H… π

interactions: experimental evidence, computational criteria, and database analysis

Ali Samie¹, Alireza Salimi^{*1}, Jered C. Garrison²

¹Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

²Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830, Nebraska, United States

Supporting Information

SO. List of Contents

S0.	List of Contents	P1
S1.	DSC diagrams for $I^{\alpha-Pz}$, $II^{\beta-Pz}$, $III^{\alpha-Py}$, $IV^{\beta-Py}$.	P2
S2.	TGA diagrams for I α -Pz, II β -Pz, III α -Py, IV β -Py.	P2-P3
S3.	FT-IR transmittance plots for I α -Pz, II β -Pz, III α -Py, IV β -Py.	P3-P5
S4.	CHN-elemental analysis for I α -Pz, II β -Pz, III α -Py, IV β -Py.	P5
S5.	Mass spectroscopy analysis for I α -Pz, II β -Pz, IV β -Py.	P6-P7
S6.	¹³ C-NMR spectra for I $^{\alpha-Pz}$, II $^{\theta-Pz}$, III $^{\alpha-Py}$, IV $^{\theta-Py}$.	P8-P11
S7.	¹ H-NMR spectra for I α -Pz, II β -Pz, III α -Py, IV β -Py.	P12-P17
S8.	¹ H-NMR spectrum interpretation for I $^{\alpha-Pz}$, II $^{\beta-Pz}$, III $^{\alpha-Py}$, IV $^{\beta-Py}$.	P17
S9.	PXRD patterns for I ^{α-Pz} , II ^{β-Pz} , III ^{α-Py} , IV ^{β-Py} .	P17-P18
S10.	Pi-chart of interactions with Hirschfeld surface analysis for $I^{\alpha-Pz}$, $II^{\beta-Pz}$, $III^{\alpha-Py}$, $IV^{\beta-Py}$.	P19
S11.	Fingerprint plots of Hirschfeld surface analysis for I ^{α-Pz} .	P20
S12.	Fingerprint plots of Hirschfeld surface analysis for II ^{6-Pz} .	P20
S13.	Fingerprint plots of Hirschfeld surface analysis for III α -Py.	P21
S14.	Fingerprint plots of Hirschfeld surface analysis for IV ^{<i>B-Py</i>} .	P21
S15.	NICS for $I^{\alpha-Pz}$, $II^{\beta-Pz}$, $III^{\alpha-Py}$ and $IV^{\beta-Py}$.	P22
S16.	HOMA index for I $^{\alpha-Pz}$, II $^{\beta-Pz}$, III $^{\alpha-Py}$, IV $^{\beta-Py}$.	P22
S17.	Energy calculations of all the molecular dimers with interaction energy ranking for I $^{\alpha$ -Pz}.	P23
S18.	Energy calculations of all the molecular dimers with interaction energy ranking for II ^{6-Pz} .	P23
S19.	Energy calculations of all the molecular dimers with interaction energy ranking for III $^{\alpha$ -Py}.	P23
S20.	Energy calculations of all the molecular dimers with interaction energy ranking for IV ^{<i>B-Py</i>} .	P23
S21.	Energy calculations of 14 molecular tetramers with interaction energy for I α^{-Pz} .	P24
S22.	Energy calculations of 11 molecular tetramers with interaction energy for II ^{B-Pz} .	P24
S23.	Energy calculations of 17 molecular tetramers with interaction energy for III α -Py.	P24
S24.	Energy calculations of 17 molecular tetramers with interaction energy for IV ^{6-Py} .	P25
S25 .	Neutron normalized O···H, N···H,C–H··· π_e/π_c interaction geometrical parameters for I $^{\alpha-Pz}$, II $^{\beta-Pz}$, III $^{\alpha-Py}$, IV $^{\beta-Py}$.	P25-P27
S26.	NBO analysis for I α -Pz	P28
S27.	NBO analysis for II ^{8-Pz}	P29
S28.	NBO analysis for III ^{α-Py}	P30
S29.	NBO analysis for IV ^{6-Py}	P31

S1. DSC diagrams for $| \alpha^{-P_z}$, $|| \beta^{-P_z}$, $||| \alpha^{-P_y}$, $|V \beta^{-P_y}$.

S2. TGA diagrams for I $^{\alpha-Pz}$, II $^{\beta-Pz}$, III $^{\alpha-Py}$, IV $^{\beta-Py}$.

S4. CHN-elemental analysis for I $^{\alpha-Pz}$, II $^{\beta-Pz}$, III $^{\alpha-Py}$, IV $^{\beta-Py}$.

α-Pz	₿-Pz			
Method Name : NCHS	Method Name : NCHS			
Method Filename : Copy of Copy of N C H S-bkp .mth	Method Filename : Copy of Copy of N C H S-bkp .mth			
Filename AS Method Vial	Filename AS Method Vial			
samie-35	samie-71			
# Group Sample Name Type Weig. Pro.F	# Group Sample Name Type Weig. Pro.F			
35 1 AS3 UNK 1.024 6.25	71 1 AS1 UNK 0.939 6.25			
Component name Element %	Component name Element %			
Nitrogen% 10.95125294	Nitrogen% 11.09747314			
Carbon% 75.19926453	Carbon% 73.56679535			
Hydrogen% 4.31277895	Hydrogen% 4.583220959			
Sulphur% 0	Sulphur% 0			
1 Sample(s) in Group No : 1	1 Sample(s) in Group No : 1			
Component Name Average	Component Name Average			
Nitrogen% 10.95125294	Nitrogen% 11.09747314			
Carbon% 75.19926453	Carbon% 73.56679535			
Hydrogen% 4.31277895	Hydrogen% 4.583220959			
Sulphur% 0	Sulphur% 0			
III α-Py	IV ^{β-Py}			
Method Name : NCHS	Method Name : NCHS			
Method Filename : Copy of Copy of N C H S-bkp .mth	Method Filename : Copy of Copy of N C H S-bkp .mth			
Filename AS Method Vial	Filename AS Method Vial			
samle-34	samie-72			
# Group Sample Name Type Weig. Pro.F	# Group Sample Name Type Weig. Pro.F			
34 1 AS2 UNK 1.041 6.25	72 1 AS4 UNK 1.068 6.25			
Component name Element %	Component name Element %			
Altrogens 5.5012/5/5 Carbon% 79.83586884 Hydrogen% 4.67258215 Sulphur% 0	Nitrogen% 5.741287231 Carbon% 78.52898407 Hydrogen% 4.847149372 Sulphur% 0			
l Sample(s) in Group No : l	l Sample(s) in Group No : 1			
Component Name Average	Component Name Average			
Nitrogen% 5.501227379	Nitrogen% 5.741287231			
Carbon% 79.83586884	Carbon% 78.52898407			
Hydrogen% 4.67258215	Hydrogen% 4.847149372			
Sulphur% 0	Sulphur% 0			

S5. Mass spectroscopy analysis for I $^{\alpha-Pz}$, II $^{\beta-Pz}$, III $^{\alpha-Py}$, IV $^{\beta-Py}$.

S6. ¹³C-NMR spectra for I $^{\alpha-Pz}$, II $^{\beta-Pz}$, III $^{\alpha-Py}$, IV $^{\beta-Py}$.

Ρ9

S8. ¹H-NMR spectrum interpretation for I $^{\alpha-P_z}$, II $^{\beta-P_z}$, III $^{\alpha-P_y}$, IV $^{\beta-P_y}$.

	H ₂	H ₃	H _{3,} H _{4,} H ₆	H ₇ ,H ₈	H ₁₅	H ₇	H ₈	H1	H9	H ₆	H9	H ₄	H ₁₄	H ₁₆	H ₁₅	H ₁₃
(Ι ^{α-Ρ} ^z)	7.54(dd)		7.58(m3H)			7.93(d)	7.99(d)				8.04(dd)		8.97(dd)		9.02(d)	9.50(d)
(^{β-Pz})		7.54(dd)		7.58(m2H)				7.91(d)	7.97(dd)	8.01(dd)		8.07(d)	8.95(dd)		9.01(d)	9.45(d)
(III ^{α-Py})	7.51(dd)		7.59(m3H)		7.67(dd)	7.91(d)	7.93(d)				8.02(dd)		8.58(dt)	8.95(dd)		9.41(d)
(IV ^{β-Py})		7.50(dd)		7.56(m2H)	7.67(dd)			7.87(d)	7.94(dd)	7.99(dd)		8.03(d)	8.51(dt)	8.91(dd)		9.31(d)

S9. PXRD patterns for I $^{\alpha-Pz}$, II $^{\beta-Pz}$, III $^{\alpha-Py}$, IV $^{\beta-Py}$.

P17

S10. Pi-chart of interactions with Hirschfeld surface analysis for Ι^{α-Pz}, ΙΙ ^{β-Pz}, ΙΙΙ ^{α-Py}, ΙV ^{β-Py}.

S11. Fingerprint plots of Hirschfeld surface analysis for I α -Pz.

S12. Fingerprint plots of Hirschfeld surface analysis for II $^{B-Pz}$.

S13. Fingerprint plots of Hirschfeld surface analysis for III α -Py.

S14. Fingerprint plots of Hirschfeld surface analysis for IV ^{*B-Py*}.

Ι ^{α-Pz}	II ^{6-Pz}	III ^{α-Py}	IV ^{6-Py}	Place
-0.4517	-0.4398	-0.4077	-0.4495	Pz or Py (up)
-0.8809	-0.8749	-0.8063	-0.8672	Pz or Py (up)
-1.9551	-1.9593	-1.8145	-1.8975	Pz or Py (up)
-4.9507	-4.9833	-4.7120	-4.7625	Pz or Py (up)
-10.1940	-10.2941	-10.0593	-9.9159	Pz or Py (up)
-5.3489	-5.3935	-6.4528	-6.5976	Pz or Py (mid-centre)
-10.0585	-10.1638	-10.0458	-10.0033	Pz or Py (down)
-4.8303	-5.0057	-4.7221	-4.7565	Pz or Py (down)
-1.8207	-1.9823	-1.7838	-1.8908	Pz or Py (down)
-0.7542	-0.8957	-0.7630	-0.8575	Pz or Py (down)
-0.3444	-0.4623	-0.3639	-0.4367	Pz or Py (down)
-0.6691	-0.6423	-0.6331	-0.6505	Ring 1 (up)
-1.1685	-1.1268	-1.1021	-1.1449	Ring 1 (up)
-2.2883	-2.2346	-2.1462	-2.2762	Ring 1 (up)
-5.1920	-5.1035	-4.8837	-5.1689	Ring 1 (up)
-10.6901	-10.3997	-10.2309	-10.4353	Ring 1 (up)
-9.5743	-9.5055	-9.5076	-9.5673	Ring 1 (mid-centre)
-10.3035	-10.1841	-10.6519	-10.2323	Ring 1(down)
-4.8067	-4.8487	-4.9273	-4.9286	Ring 1(down)
-2.0372	-2.0909	-2.0512	-2.1102	Ring 1(down)
-1.0001	-1.0310	-0.9838	-1.0315	Ring 1(down)
-0.5550	-0.5753	-0.5393	-0.5751	Ring 1(down)
-0.6963	-0.6904	-0.6826	-0.6944	Ring 2 (up)
-1.2112	-1.2149	-1.1870	-1.2114	Ring 2 (up)
-2.3437	-2.3803	-2.3022	-2.3650	Ring 2 (up)
-5.2323	-5.3562	-5.1766	-5.3134	Ring 2 (up)
-10.5022	-10.7019	-10.5233	-10.5215	Ring 2 (up)
-8.4493	-8.4469	-8.4953	-8.4286	Ring 2(mid-centre)
-10.3789	-10.4820	-10.4557	-10.6535	Ring 2 (up)
-5.1904	-5.2906	-5.2281	-5.3618	Ring 2 (up)
-2.3267	-2.3460	-2.3021	-2.3778	Ring 2 (up)
-1.1924	-1.1991	-1.1357	-1.2109	Ring 2 (up)
-0.6753	-0.6873	-0.6165	-0.6887	Ring 2 (up)

S15. NICS for I $^{\alpha-Pz}$, II $^{\beta-Pz}$, III $^{\alpha-Py}$ and IV $^{\beta-Py}$.

S16. HOMA index for I $^{\alpha-P_z}$, II $^{\beta-P_z}$, III $^{\alpha-P_y}$, IV $^{\beta-P_y}$.

	HOMA R1	HOMA R ₂	
Ι ^{α-Pz}	0.826	0.785	0.806
II ^{β-Pz}	0.799	0.834	0.816
III ^{α-Py}	0.828	0.784	0.806
IV ^{β-Py}	0.795	0.819	0.807
β-naphthol	0762	0.712	0.737
α-naphthol	0.759	0.754	0.756

Dimers (I ^{α-Pz})	Ranking	Dimer Energy	Intermolecular Interactions
Dimer4 (D4)	Rank1	-8.03	С–Н…О С–Н…О
Dimer3 (D3)	Rank2	-5.75	$C-H\cdots\pi$ ($R_{2\alpha}$ edge) $C-H\cdotsO$
Dimer1 (D1)	Rank3	-5.21	C-H··· π (R _{2α} edge) C-H··· π (R _{pz} edge)
Dimer5 (D5)	Rank4	-2.11	$C-H\cdots\pi$ ($R_{2\alpha}$ edge)
Dimer2 (D2)	Rank5	-0.89	С–Н…Н

S17. Energy calculations of all the molecular dimers with interaction energy ranking for $I^{\alpha-Pz}$.

S18. Energy calculations of all the molecular dimers with interaction energy ranking for II ^{*β-Pz*}.

Dimers (II ^{6-Pz})	Ranking	Dimer Energy	Intermolecular Interactions
Dimer2 (D2)	Rank1	-9.16	$C-H\cdots\pi$ ($R_{1\beta}$ edge)
			C–H···π (R _{pz} edge)
			C–H…O
Dimer4 (D4)	Rank2	-5.75	C–H··· π (R ₁ β centre)
			$C-H\cdots\pi$ ($R_{2\beta}$ edge)
			C–H…O
Dimer3 (D3)	Rank3	-4.43	C–H··· π (R _{2β} centre)
Dimer5 (D5)	Rank4	-1.78	$C-H\cdots\pi$ ($R_{2\beta}$ edge)
			Or C–H…H
Dimer1 (D1)	Rank5	-1.40	C–H…N

S19. Energy calculations of all the molecular dimers with interaction energy ranking for III α -Py.

Dimers (III ^{α-Py})	Ranking	Dimer Energy	Intermolecular Interactions
Dimer5 (D5)	Rank1	-6.78	C–H…O
Dimer6 (D6)	Rank2	-6.70	C–H··· π (R _{1α} and R _{2α} edge)
Dimer1 (D1)	Rank3	-5.66	С–Н…Н
			C–H…N
Dimer3 (D3)	Rank4	-3.11	$C-H\cdots\pi$ ($R_{1\alpha}$ edge)
Dimer4 (D4)	Rank5	-2.36	С–Н…Н
Dimer2 (D2)	Rank6	-1.00	С–Н…Н

S20. Energy calculations of all the molecular dimers with interaction energy ranking for IV β -Py.

Dimers (IV ^{6-Py})	Ranking	Dimer Energy	Intermolecular Interactions
Dimer2 (D2)	Rank1	-8.65	$C-H\cdots\pi$ ($R_{1\beta}$ edge)
			C–H…π (R _{pz} centre)
			С–Н…N, С–Н…О
Dimer4 (D4)	Rank2	-6.90	C–H··· π (R ₂ centre)
			$C-H\cdots\pi$ ($R_{1\beta}$ edge)
			C–H…O
Dimer5 (D5)	Rank3	-5.44	С–Н…Н
Dimer3 (D3)	Rank4	-4.38	C–H··· π (R _{2β} centre)
Dimer1 (D1)	Rank5	-1.83	C–H…N
Dimer6 (D6)	Rank6	-1.77	С–Н…Н

Tetramers (I ^{α-Pz})	Interaction energy	Cooperation Energy
Tetramer1 (D1+D1+D1)	-15.64	-0.30
Tetramer2 (D3+D1+D4)	-19.00	-1.35
Tetramer3 (D3+D3+D3)	-17.25	-0.72
Tetramer4 (D3+D3+D4)	-19.53	-0.68
Tetramer5 (D3D3D5)	-13.61	-1.40
Tetramer6 (D3D5D3)	-13.61	-2.40
Tetramer7 (D4D1D5+D3)	-21.10	-1.36
Tetramer8 (D4D3D4)	-21.81	1.93
Tetramer9 (D4D4D3)	-21.81	-1.09
Tetramer10 (D4D4D5)	-18.17	-2.48
Tetramer11 (D4D5D4)	-18.17	-1.86
Tetramer12 (D5D1D5+D1)	-14.65	-0.47
Tetramer13 (D5D3D5)	-9.97	-1.19
Tetramer14 (D5D4D5)	-12.25	-1.96

S21. Energy calculations of 14 molecular tetramers with interaction energy for $I^{\alpha-Pz}$.

S22. Energy calculations of 11 molecular tetramers with interaction energy for II $^{\beta-Pz}$.

Tetramers (II ^{6-Pz})	Interaction energy	Cooperation Energy
Tetramer1 (D1D1D1)	-4.20	-0.06
Tetramer2 (D2D2D2)	-27.48	-1.74
Tetramer3 (D2D2D4)	-24.07	-1.06
Tetramer4 (D2D3D4)	-19.34	-0.06
Tetramer5 (D2D5D2)	-20.11	-0.07
Tetramer6 (D3D3D3)	-13.30	-12.55
Tetramer7 (D4D1D4)	-12.89	0.01
Tetramer8 (D4D2D4)	-20.65	-0.31
Tetramer9 (D4D4D2)	-20.65	-0.13
Tetramer10 (D4D4D4)	-17.24	-0.44
Tetramer11 (D5D5D5)	-5.36	-12.45

S23. Energy calculations of 17 molecular tetramers with interaction energy for III α -Py.

Tetramers (III ^{α-Py})	Interaction energy	Cooperation Energy
Tetramer1 (D1D1D1)	-16.99	-2.85
Tetramer2 (D1D1D3)	-14.43	-1.71
Tetramer3 (D1D1D5)	-18.11	-1.60
Tetramer4 (D1D3D1+D3)	-17.54	-2.77
Tetramer5 (D1D5D1+D4)	-20.48	-0.05
Tetramer6 (D2D2D2)	-3.01	-0.13
Tetramer7 (D3D1D3)	-11.87	-2.82
Tetramer8 (D3D3D1)	-11.87	-2.66
Tetramer9 (D3D3D3)	-9.32	-0.26
Tetramer10 (D3D3D5)	-13.00	-0.07
Tetramer11 (D3D5D3)	-13.00	-0.06
Tetramer12 (D4D4D4)	-7.09	-0.34
Tetramer13 (D5D1D5+D4)	-21.60	-1.18
Tetramer14 (D5D3D5)	-16.68	-0.18
Tetramer15 (D5D5D1)	-19.24	-1.56
Tetramer16 (D5D5D3)	-16.68	-1.32
Tetramer17 (D5D5D5)	-20.36	-2.67

S24. Energy calculations of 1 ⁻	' molecular tetramers with	interaction energy for IV $^{\beta-Py}$.
--	----------------------------	---

Tetarmers (IV ^{6-Py})	Interaction energy	Cooperation Energy
Tet1 (D1D1D1)	-5.49	-0.09
Tet2 (D2D2D2)	-25.93	-1.55
Tet3 (D2D2D4)	-24.19	-1.35
Tet4 (D2D3D2)	-21.67	-0.25
Tet5 (D2D4D2)	-24.19	-1.15
Tet6 (D3D3D3+2D5)	-24.02	-0.04
Tet7 (D3D5D3)	-14.20	-0.01
Tet8 (D4D3D2+D1)	-17.37	-4.14
Tet9 (D4D3D4)	-18.17	0.05
Tet10 (D4D4D4)	-20.69	-0.70
Tet11 (D4D5D2)	-20.98	-3.90
Tet12 (D4D5D4)	-19.23	-0.63
Tet13 (D5D2D5+D4)	-26.42	-2.71
Tet14 (D5D3D5+2D3)	-24.01	-0.04
Tet15 (D5D5D3+D3)	-19.64	-0.17
Tet16 (D5D5D5)	-16.33	-0.27
Tet17 (D6D6D6+2D5)	-16.21	0.18

S25. Neutron normalized O···H, N···H, C–H··· π_e/π_c interaction geometrical parameters for I $^{\alpha-P_z}$, II $^{\beta-P_z}$, III $^{\alpha-P_y}$, IV $^{\beta-P_y}$.

Interaction	D-H/Å	H…A/Å	D…A/Å	∠D–H…A/°		
Ι ^{α-Pz}						
$C_2-H_2\cdots N_2$	1.089	2.973	3.574	115.14		
C ₃ -H ₃ O _{2A}	1.089	2.909	3.752	134.36		
$C_4 - H_4 - C_8 - C_9 (C_g 8)$	1.089	2.825	3.556	124.45		
$C_9 - H_9 - C_3 - C_4 (C_g 3)$	1.089	2.889	3.559	119.92		
$C_4 - H_4 - C_3 - C_4 (C_g 3)$	1.089	3.004	4.005	152.91		
$C_4 - H_4 - C_5 (C_g 4)$	1.089	3.301	4.235	144.54		
C ₁₅ -H ₁₅ O ₁	1.089	2.495	3.485	150.64		
$C_{15}-H_{15}\cdots C_1-C_2$ (Cg1)	1.089	2.919	3.862	145.00		
C ₁₅ -H ₁₅ R ₁	1.089	2.920	3.611	121.57		
$C_{14}-H_{14}-C_5-C_6$ (Cg5)	1.089	2.750	3.605	135.15		
$C_{14}-H_{14}-C_5-C_{10}$ (Cg11)	1.089	2.808	3.607	130.05		
$C_{14}-H_{14}\cdots C_{4}-C_{5}$ (Cg4)	1.089	2.981	3.554	113.23		
$C_{14}-H_{14}\cdots R_2$	1.089	2.825	3.839	154.80		
C ₂ -H ₂ O ₁	1.089	2.361	3.280	140.99		
C ₁₃ -H ₁₃ O _{2A}	1.089	2.573	3.472	139.07		
$C_9-H_9\cdots N_2$	1.089	3.138	3.997	136.38		
$C_8-H_8\cdots N_1$	1.089	3.076	3.792	123.85		
$C_{13}-H_{13}-C_1-C_2$ (Cg1)	1.089	3.102	4.178	169.76		
$C_{13}-H_{13}-C_{10}-C_1$ (Cg10)	1.089	3.482	4.540	164.35		
$C_7 - H_7 - C_7 - C_8 (C_g 7)$	1.089	3.017	3.396	100.90		
C ₇ –H ₇ …R ₂	1.089	3.433	4.059	117.92		
$C_3-H_3\cdots N_1$	1.089	2.875	3.630	126.48		
$C_6-H_6\cdots N_1$	1.089	2.830	3.840	154.31		
II ^{<i>B-Pz</i>}						
C ₈ -H ₈ N ₁	1.089	2.554	3.429	136.76		
$C_1-H_1\cdots N_1$	1.089	2.930	3.751	132.33		
$C_1-H_1\cdots N_2$	1.089	3.174	3.944	128.45		

$C_9-H_9\cdots N_1$	1.089	2.874	3.717	134.26
$C_1 - H_1 \cdots C_{14} - C_{15} (C_g 14)$	1.089	2.760	3.802	160.11
C ₃ -H ₃ O ₁	1.089	2.576	3.460	137.64
C ₁₃ -H ₁₃ O _{2b}	1.089	2.703	3.221	108.61
$C_{13}-H_{13}\cdots C_2-C_3$ (Cg2)	1.089	2.680	3.643	147.15
$C_6 - H_6 - C_7 (C_g 6)$	1.089	2.689	3.722	158.02
C ₆ -H ₆ R ₂	1.089	2.582	3.404	131.54
$C_6 - H_6 - C_7 - C_8 (C_g 7)$	1.089	2.794	3.680	138.36
$C_6 - H_6 \cdots C_5 - C_6 (C_g 5)$	1.089	2.747	3.653	140.45
$C_{15}-H_{15}\cdots C_{1}-C_{2}(C_{g}1)$	1.089	2.850	3.779	143.21
$C_{15}-H_{15}\cdots C_2-C_3$ (Cg2)	1.089	2.832	3.731	139.86
$C_{15}-H_{15}\cdots R_{1}$	1.089	2.821	3.522	122.04
C ₁₅ -H ₁₅ O ₁	1.089	2.320	3.279	145.77
$C_{14}-H_{14}-C_5-C_9$ (Cg11)	1.089	2.685	3.403	123.01
$C_{14}-H_{14}\cdots C_{9}-C_{10}$ (Cg9)	1.089	2.619	3.595	148.69
C ₁₄ -H ₁₄ R ₂	1.089	2.630	3.505	136.91
$C_9 - H_9 - C_7 - C_8 (C_g 7)$	1.089	3.142	3.852	123.55
$C_7 - H_7 \cdots C_8 - C_9 (C_g 8)$	1.089	3.414	3.824	103.88
$C_8 - H_8 - C_6 - C_7 (C_g 6)$	1.089	3.389	4.190	131.48
C ₈ -H ₈ C ₇ -C ₈ (C _g 7)	1.089	3.201	3.879	121.23
$C_9 - H_9 \cdots C_8 - C_9 (C_g 8)$	1.089	3.575	4.411	134.83
$C_8 - H_8 \cdots R_2$	1.089	3.745	4.623	138.99
$C_4-H_4\cdots N_1$	1.089	2.777	3.589	131.17
III ^{α-Py}				
$C_8-H_8\cdots N_1$	1.089	2.459	3.202	124.34
$C_2-H_2\cdots N_1$	1.089	2.849	3.679	132.93
C ₂ -H ₂ O _{2a}	1.089	3.465	3.615	89.10
C ₈ -H ₈ C ₁₄ -C ₁₅ (C _g 15)	1.089	3.293	4.096	131.52
C ₈ -H ₈ N ₁	1.089	3.517	4.414	140.67
$C_{14}-H_{14}-C_1-C_2$ (Cg1)	1.089	2.732	3.692	146.78
C_{14} - H_{14} ···· R_1	1.089	3.254	4.001	126.65
C_{14} - H_{14} ···O _{2a}	1.089	3.151	4.069	142.44
$C_{15}-H_{15}-C_{3}-C_{4}$ (Cg3)	1.089	3.274	4.176	140.85
$C_{15}-H_{15}\cdots R_1$	1.089	3.336	4.034	123.04
C4-H4O1	1.089	2.792	3.840	161.27
$C_6-H_6\cdots O_1$	1.089	3.125	4.084	147.26
$C_{13}-H_{13}\cdots C_4-C_5$ (Cg4)	1.089	3.166	4.176	154.54
$C_{13}-H_{13}\cdots C_{3}-C_{4}$ (Cg3)	1.089	3.365	4.192	133.73
$C_{13}-H_{13}-C_5-C_6$ (Cg5)	1.089	3.408	4.492	173.68
$C_3-H_3\cdots O_1$	1.089	2.434	3.460	156.63
$C_3 - H_3 - C_{10} - C_1 (C_g = 10)$	1.089	3.255	4.046	130.32
$C_3 - H_3 - C_9 - C_{10} (C_g 9)$	1.089	3.229	3.777	112.18
C ₃ -H ₃ C ₁₀ -C ₅ (C _g 11)	1.089	3.206	3.722	110.03
C3-H3R1	1.089	3.479	4.195	124.65
C3-H3···· R2	1.089	3.371	3.605	93.48
$C_2-H_2-C_4-C_5$ (Cg4)	1.089	3.203	3.869	120.36
$C_2 - H_2 - C_5 - C_6 (C_g 5)$	1.089	3.143	3.547	102.81
$C_{15}-H_{15}-C_{6}-C_{7}$ (Cg6)	1.089	2.985	3.835	135.09
$C_{16}-H_{16}-C_7-C_8$ (Cg7)	1.089	2.841	3.666	132.53
$C_{1} = H_{1} = C_{2} (C_{2})$	1.089	2.764	3.740	149.03

$C_{16}-H_{16}\cdots R_2$	1.089	3.158	3.907	126.64
C ₁₅ -H ₁₅ C ₇ -C ₈ (C _g 7)	1.089	3.214	3.853	115.67
$C_{15} - H_{15} - R_2$	1.089	3.485	4.077	118.40
IV ^{B-Py}				
$C_8-H_8\cdots N_1$	1.089	2.557	3.410	134.47
C ₉ –H ₉ …N ₁	1.089	2.716	3.562	134.14
$C_1 - H_1 \cdots C_{14} - C_{15} (C_g 14)$	1.089	2.723	3.780	163.45
C ₃ -H ₃ O ₁	1.089	2.567	3.480	140.82
$C_{13}-H_{13}-C_2-C_3$ (Cg2)	1.089	2.659	3.568	140.54
$C_6 - H_6 - C_5 - C_6 (C_g 5)$	1.089	2.716	3.631	141.40
$C_6 - H_6 - C_6 - C_7 (C_g 6)$	1.089	2.660	3.701	159.86
$C_6 - H_6 - C_7 - C_8 (C_g 7)$	1.089	2.769	3.679	139.89
$C_6 - H_6 \cdots R_2$	1.089	2.568	3.405	133.06
C ₁₄ -H ₁₄ ····C ₈ -C ₉ (C _g 8)	1.089	2.779	3.836	163.60
C ₁₄ -H ₁₄ ···C ₅ -C ₁₀ (C _g 11)	1.089	2.775	3.447	119.74
C ₁₄ -H ₁₄ ····C ₉ -C ₁₀ (C _g 9)	1.089	2.675	3.600	142.38
$C_{14}-H_{14}\cdots R_2$	1.089	2.600	3.485	137.90
$C_{15}-H_{15}\cdots R_1$	1.089	2.785	3.506	123.51
$C_{15}-H_{15}-C_1-C_2$ (Cg1)	1.089	2.768	3.732	147.49
C ₁₅ -H ₁₅ O ₁	1.089	2.428	3.306	136.68
C ₉ –H ₉ …C ₆ –C ₇ (C _g 6)	1.089	3.155	3.820	120.15
C ₆ -H ₆ ···C ₉ -C ₁₀ (C _g 9)	1.089	3.142	3.815	120.73
C ₆ -H ₆ ···C ₁₀ -C ₁ (C _g 10)	1.089	3.220	3.875	119.56
$C_1 - H_1 - C_5 - C_6 (C_g 5)$	1.089	3.230	3.883	119.47
$C_1 - H_1 - C_4 - C_5 (C_g 4)$	1.089	3.164	3.835	120.64
$C_4 - H_4 - C_1 - C_2 (C_g 1)$	1.089	3.228	3.862	118.05
$C_3 - H_3 - C_{15} - C_{16} (C_g 15)$	1.089	3.461	4.201	126.50
C ₃ -H ₃ O _{2b}	1.089	3.774	4.063	97.59
$C_{16}-H_{16}-O_1$	1.089	3.397	3.379	79.80
$C_{15}-H_{15}\cdots O_{1}$	1.089	3.204	3.264	83.39
$C_{13}-H_{13}\cdots C_{14}-C_{15}$ (Cg14)	1.089	3.336	3.966	118.05
$C_{15}-H_{15}-C_{12}-C_{13}$ (Cg12)	1.089	3.367	3.367	114.56
$C_8 - H_8 - C_6 - C_7 (C_g 6)$	1.089	3.399	4.208	132.16
$C_8 - H_8 - C_7 - C_8 (C_g 7)$	1.089	3.182	3.873	122.16
$C_7 - H_7 - C_8 - C_9 (C_g 8)$	1.089	3.411	3.830	104.42
$C_8 - H_8 \cdots C_8 - C_9 (C_g 8)$	1.089	3.562	3.904	100.16

Natural Bond Orbital Analysis (NBO) has investigated for all of the dimers and has compared with the monomers in all compounds. NBO analysis has shown the charge variations for every interacted atom in the dimers.

^{α-Pz}	Monomer	Dim	ner1	Din	ner2	Dim	Dimer3		ner4	Din	ner5
O ₁	-0.564	-0.567	-0.564	-0.570	-0.586	-0.566	-0.565	-0.571	-0.572	-0.564	-0.563
O _{2a}	-0.528	-0.527	-0.528	-0.529	-0.525	-0.528	-0.528	-0.534	-0.524	-0.528	-0.532
N ₁	-0.404	-0.404	-0.404	-0.411	-0.379	-0.404	-0.404	-0.404	-0.403	-0.404	-0.400
N ₂	-0.376	-0.376	-0.376	-0.378	-0.404	-0.375	-0.376	-0.391	-0.375	-0.376	-0.387
C 1	0.321	0.312	0.323	0.323	0.321	0.321	0.321	0.300	0.315	0.323	0.321
C ₂	-0.219	-0.211	-0.219	-0.221	-0.221	-0.221	-0.211	-0.582	-0.222	-0.219	-0.220
C ₃	-0.200	-0.195	-0.196	-0.200	-0.192	-0.191	-0.191	0.647	-0.190	-0.196	-0.191
C ₄	-0.164	-0.192	-0.177	-0.166	-0.179	-0.181	-0.181	-0.537	-0.178	-0.177	-0.179
C₅	-0.053	-0.036	-0.034	-0.053	-0.046	-0.046	-0.046	-0.062	-0.059	-0.034	-0.046
C ₆	-0.176	-0.182	-0.181	-0.177	-0.174	-0.180	-0.180	-0.175	-0.176	-0.181	-0.175
C ₇	-0.200	-0.200	-0.198	-0.200	-0.197	-0.198	-0.198	-0.203	-0.197	-0.198	-0.199
C 8	-0.196	-0.197	-0.196	-0.197	-0.200	-0.204	-0.204	-0.202	-0.194	-0.196	-0.205
C ₉	-0.175	-0.179	-0.174	-0.174	-0.173	-0.164	-0.164	-0.164	-0.177	-0.174	-0.172
C ₁₀	-0.090	-0.084	-0.096	-0.090	-0.094	-0.096	-0.096	-0.097	-0.103	-0.096	-0.096
C ₁₁	0.776	0.774	0.776	0.777	0.786	0.776	0.776	0.786	0.781	0.776	0.778
C ₁₂	0.057	0.055	0.057	0.051	0.052	0.057	0.057	0.061	0.055	0.057	0.058
C ₁₃	0.057	0.056	0.057	0.051	0.077	0.057	0.057	0.065	0.058	0.057	0.062
C ₁₄	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.025	0.029	0.027	0.037
C15	0.013	0.013	0.013	0.014	0.006	0.013	0.013	0.010	0.014	0.013	0.012
H ₂	0.222	0.217	0.223	0.222	0.223	0.223	0.222	0.246	0.226	0.223	0.223
H₃	0.211	0.226	0.209	0.210	0.211	0.211	0.211	0.094	0.215	0.209	0.211
H ₄	0.206	0.213	0.204	0.206	0.208	0.207	0.207	0.201	0.212	0.204	0.208
H ₆	0.207	0.207	0.204	0.207	0.208	0.207	0.207	0.207	0.212	0.204	0.208
H ₇	0.200	0.200	0.198	0.207	0.209	0.217	0.217	0.207	0.212	0.198	0.199
H ₈	0.209	0.208	0.209	0.208	0.210	0.210	0.210	0.208	0.212	0.209	0.210
H₃	0.216	0.215	0.216	0.217	0.210	0.214	0.214	0.213	0.218	0.216	0.221
H ₁₃	0.220	0.221	0.220	0.216	0.228	0.220	0.220	0.222	0.221	0.220	0.220
H ₁₄	0.197	0.197	0.197	0.202	0.194	0.197	0.197	0.197	0.198	0.197	0.196
H ₁₅	0.199	0.199	0.199	0.221	0.196	0.199	0.199	0.199	0.199	0.199	0.195

S26. NBO analysis for I α -Pz

II ^{B-Pz}	Monomer	Din	ner1	Din	ner2	Din	ner3	Dim	ner4	Dim	Dimer5	
O 1	-0.569	-0.569	-0.568	-0.523	-0.562	-0.568	-0.568	-0.575	-0.573	-0.569	-0.569	
O _{2b}	-0.524	-0.524	-0.523	-0.590	-0.549	-0.523	-0.524	-0.524	-0.522	-0.523	-0.524	
N ₁	-0.408	-0.409	-0.418	-0.407	-0.412	-0.408	-0.408	-0.415	-0.406	-0.408	-0.408	
N ₂	-0.375	-0.375	-0.372	-0.378	-0.389	-0.375	-0.375	-0.374	-0.375	-0.375	-0.375	
C 1	-0.206	-0.207	-0.206	-0.216	-0.269	-0.200	-0.206	-0.206	-0.212	-0.205	-0.211	
C ₂	0.295	0.293	0.295	0.296	0.258	0.296	0.294	0.298	0.291	0.296	0.296	
C ₃	-0.223	-0.225	-0.223	-0.223	-0.238	-0.221	-0.231	-0.222	-0.225	-0.222	-0.224	
C ₄	-0.159	-0.160	-0.159	-0.157	-0.159	-0.162	-0.149	-0.161	-0.156	-0.160	-0.158	
C ₅	-0.066	-0.067	-0.066	-0.070	-0.074	-0.074	-0.061	-0.066	-0.075	-0.065	-0.072	
C ₆	-0.173	-0.173	-0.173	-0.173	-0.173	-0.177	-0.178	-0.173	-0.168	-0.172	-0.172	
C ₇	-0.206	-0.202	-0.205	-0.204	-0.207	-0.213	-0.204	-0.207	-0.199	-0.210	-0.212	
C ₈	-0.199	-0.201	-0.198	-0.196	-0.200	-0.202	-0.196	-0.200	-0.194	-0.203	-0.183	
C9	-0.178	-0.169	-0.178	-0.185	-0.186	-0.169	-0.182	-0.178	-0.187	-0.177	-0.194	
C ₁₀	-0.048	-0.055	-0.048	-0.038	-0.072	-0.053	-0.053	-0.048	-0.064	-0.049	-0.034	
C ₁₁	0.775	0.774	0.775	0.785	0.783	0.775	0.775	0.776	0.779	0.775	0.775	
C ₁₂	0.056	0.057	0.059	0.056	0.060	0.056	0.057	0.049	0.054	0.056	0.056	
C ₁₃	0.060	0.060	0.064	0.076	0.066	0.061	0.060	0.054	0.062	0.061	0.060	
C ₁₄	0.030	0.030	0.031	0.033	0.021	0.031	0.030	0.030	0.032	0.031	0.030	
C 15	0.013	0.013	0.015	0.010	0.013	0.014	0.013	0.010	0.014	0.013	0.013	
H1	0.222	0.221	0.222	0.217	0.207	0.224	0.221	0.222	0.223	0.222	0.221	
H₃	0.223	0.222	0.223	0.223	0.244	0.224	0.221	0.223	0.227	0.224	0.223	
H ₄	0.210	0.209	0.210	0.209	0.208	0.210	0.208	0.209	0.214	0.210	0.210	
H ₆	0.207	0.205	0.207	0.206	0.206	0.210	0.215	0.206	0.211	0.208	0.207	
H ₇	0.208	0.206	0.208	0.208	0.207	0.210	0.210	0.207	0.212	0.213	0.209	
H ₈	0.209	0.220	0.209	0.209	0.208	0.211	0.208	0.208	0.212	0.205	0.215	
H9	0.207	0.203	0.208	0.214	0.205	0.211	0.206	0.207	0.211	0.208	0.202	
H ₁₃	0.222	0.222	0.221	0.220	0.225	0.222	0.222	0.217	0.224	0.222	0.222	
H ₁₄	0.198	0.197	0.197	0.195	0.199	0.198	0.197	0.203	0.198	0.198	0.198	
H ₁₅	0.198	0.198	0.199	0.195	0.201	0.198	0.198	0.222	0.199	0.198	0.198	

S27. NBO analysis for II ^{β-Pz}

III α-Py	Monomer	Din	ner1	Dim	ner2	Din	ner3	Di	mer4	Din	Dimer5	
01	-0.570	-0.567	-0.566	-0.571	-0.569	-0.872	-0.573	-0.569	-0.579	-0.690	-0.584	
O _{2a}	-0.558	-0.556	-0.566	-0.558	-0.558	-0.598	-0.559	-0.558	-0.556	-0.741	-0.553	
N ₁	-0.437	-0.451	-0.450	-0.437	-0.437	-0.436	-0.546	-0.438	-0.430	-0.438	-0.436	
C 1	0.321	0.287	0.319	0.323	0.321	0.285	0.322	0.317	0.320	0.744	0.318	
C ₂	-0.224	-0.655	-0.226	-0.223	-0.223	-0.245	-0.224	-0.231	-0.224	-0.487	-0.227	
C₃	-0.193	-0.192	-0.197	-0.193	-0.193	-0.196	-0.193	-0.180	-0.192	-0.224	-0.194	
C 4	-0.176	-0.420	-0.175	-0.177	-0.176	-0.183	-0.177	-0.187	-0.175	-0.289	-0.186	
C ₅	-0.047	-0.085	-0.049	-0.047	-0.047	-0.048	-0.047	-0.050	-0.047	-1.733	-0.047	
C ₆	-0.174	-0.174	-0.176	-0.174	-0.174	-0.179	-0.174	-0.173	-0.174	-0.119	-0.179	
C ₇	-0.197	-0.202	-0.195	-0.198	-0.197	-0.195	-0.198	-0.207	-0.197	-0.121	-0.189	
C ₈	-0.199	-0.195	-0.195	-0.199	-0.199	-0.191	-0.200	-0.176	-0.199	-0.191	-0.185	
C ₉	-0.164	-0.177	-0.175	-0.162	-0.165	-0.176	-0.164	-0.192	-0.165	0.778	-0.184	
C ₁₀	-0.092	-0.099	-0.090	-0.091	-0.092	-0.095	-0.092	-0.078	-0.092	-0.307	-0.098	
C ₁₁	0.799	0.795	0.799	0.799	0.799	1.519	0.798	0.798	0.802	0.263	0.805	
C ₁₂	-0.189	-0.191	-0.189	-0.189	-0.187	-0.558	-0.197	-0.188	-0.191	-0.292	-0.190	
C ₁₃	0.094	0.103	0.087	0.093	0.095	0.088	0.072	0.093	0.092	0.090	0.093	
C ₁₄	0.066	0.060	0.065	0.066	0.063	0.068	-0.219	0.065	0.069	0.066	0.067	
C 15	-0.234	-0.234	-0.233	-0.233	-0.233	-0.233	-0.335	-0.234	-0.233	-0.235	-0.233	
C ₁₆	-0.154	-0.152	-0.151	-0.153	-0.153	-0.176	-0.154	-0.154	-0.154	-0.160	-0.152	
H ₂	0.223	0.223	0.221	0.223	0.223	0.226	0.223	0.221	0.223	0.066	0.222	
H₃	0.211	-0.103	0.210	0.211	0.211	0.213	0.211	0.212	0.212	0.238	0.211	
H ₄	0.208	0.196	0.207	0.208	0.208	0.209	0.208	0.215	0.209	0.207	0.207	
H ₆	0.208	0.207	0.206	0.207	0.208	0.208	0.208	0.218	0.208	0.123	0.206	
H ₇	0.209	0.207	0.207	0.205	0.209	0.209	0.208	0.207	0.209	0.205	0.219	
H ₈	0.209	0.208	0.233	0.207	0.210	0.211	0.209	0.206	0.210	0.187	0.210	
H9	0.209	0.209	0.207	0.211	0.209	0.214	0.209	0.208	0.209	0.097	0.208	
H ₁₃	0.216	0.220	0.212	0.216	0.216	0.215	0.211	0.216	0.212	0.212	0.215	
H ₁₄	0.191	0.190	0.192	0.191	0.189	0.191	0.176	0.191	0.193	0.191	0.192	
H ₁₅	0.209	0.209	0.210	0.210	0.209	0.212	0.197	0.209	0.210	0.210	0.210	
H ₁₆	0.235	0.238	0.237	0.235	0.236	0.241	0.232	0.235	0.235	0.240	0.236	

S28. NBO analysis for III α -Py

IV ^{6-Py}	Monomer	Dim	ner1	Dim	ner2	Din	ner3	Din	ner4	Din	ner5	Dim	ier6
O 1	-0.568	-0.567	-0.568	0.296	-0.598	-0.568	-0.568	-0.583	-0.574	-0.569	-0.571	-0.568	-0.568
O _{2b}	-0.559	-0.559	-0.559	-0.654	-0.567	-0.560	-0.558	-0.554	-0.558	-0.558	-0.564	-0.559	-0.559
N1	-0.448	-0.459	-0.449	-0.458	-0.445	-0.449	-0.448	-0.447	-0.456	-0.447	-0.449	-0.448	-0.448
C 1	-0.206	-0.206	-0.207	-0.202	-0.255	-0.762	-0.195	-0.213	-0.206	-0.198	0.619	-0.211	-0.206
C ₂	0.297	0.296	0.294	0.291	0.274	0.294	0.296	0.291	0.300	0.293	-0.144	0.297	0.298
C₃	-0.223	-0.224	-0.227	-0.247	-0.228	-0.226	-0.222	-0.226	-0.222	-0.223	-0.235	-0.224	-0.222
C ₄	-0.158	-0.158	-0.158	-0.157	-0.159	-0.161	-0.161	-0.152	-0.160	-0.159	-0.158	-0.158	-0.158
C₅	-0.066	-0.066	-0.067	-0.068	-0.072	-0.057	-0.081	-0.072	-0.067	-0.072	-0.081	-0.072	-0.066
C ₆	-0.172	-0.172	-0.175	-0.172	-0.176	-0.175	-0.177	-0.166	-0.172	-0.177	-0.171	-0.171	-0.172
C ₇	-0.206	-0.205	-0.198	-0.207	-0.204	-0.205	-0.213	-0.199	-0.207	-0.207	-0.206	-0.211	-0.210
C ₈	-0.199	-0.198	-0.200	-0.202	-0.197	-0.196	-0.202	-0.194	-0.200	-0.198	-0.200	-0.183	-0.203
C ₉	-0.178	-0.178	-0.170	-0.180	-0.184	-0.179	-0.173	-0.186	-0.178	-0.178	-0.199	-0.194	-0.176
C ₁₀	-0.047	-0.047	-0.054	-0.058	-0.065	-0.057	-0.044	-0.060	-0.047	-0.051	-0.177	-0.033	-0.048
C ₁₁	0.794	0.794	0.794	0.121	0.795	0.796	0.795	0.801	0.795	0.792	0.797	0.794	0.794
C ₁₂	-0.200	-0.198	-0.199	-0.244	-0.210	-0.200	-0.200	-0.203	-0.206	-0.203	-0.200	-0.200	0.200
C ₁₃	0.106	-0.127	0.105	0.093	0.108	0.106	0.106	0.107	0.100	0.102	0.107	0.105	0.106
C ₁₄	0.074	-0.245	0.073	0.060	0.076	0.074	0.075	0.077	0.071	0.075	0.074	0.074	0.074
C ₁₅	-0.248	0.075	-0.249	-0.253	-0.251	-0.248	-0.248	-0.247	-0.249	-0.247	-0.242	-0.248	-0.248
C ₁₆	-0.129	0.110	-0.129	-0.147	-0.131	-0.129	-0.129	-0.128	-0.125	-0.129	-0.117	-0.129	0.219
H1	0.221	0.221	0.219	0.217	0.208	0.214	0.222	0.223	0.222	0.224	0.011	0.220	0.222
H₃	0.223	0.223	0.221	0.242	0.220	0.221	0.224	0.225	0.223	0.215	0.222	0.223	0.224
H ₄	0.210	0.210	0.209	0.208	0.209	0.210	0.212	0.213	0.209	0.216	0.208	0.210	0.211
H6	0.207	0.207	0.205	0.207	0.206	0.216	0.210	0.211	0.206	0.213	0.207	0.207	0.208
H ₇	0.209	0.209	0.212	0.207	0.208	0.210	0.211	0.213	0.208	0.210	0.208	0.209	0.214
H ₈	0.208	0.209	0.220	0.207	0.209	0.206	0.210	0.212	0.208	0.209	0.207	0.215	0.204
H9	0.208	0.208	0.202	0.207	0.218	0.206	0.211	0.211	0.208	0.208	0.211	0.202	0.208
H ₁₃	0.213	0.231	0.213	0.215	0.215	0.213	0.213	0.212	0.208	0.215	0.212	0.213	0.213
H ₁₄	0.191	0.189	0.190	0.191	0.191	0.191	0.191	0.192	0.194	0.192	0.191	0.191	0.191
H 15	0.218	0.219	0.217	0.218	0.218	0.217	0.218	0.219	0.237	0.219	0.211	0.218	0.218
H ₁₆	0.230	0.212	0.230	0.231	0.230	0.230	0.229	0.230	0.234	0.230	0.220	0.230	0.230

S29. NBO analysis for IV ^{β-Py}