**Electronic Supporting Information** 

## Trinuclear Ni(II) Oriented Highly Dense Packing and $\pi$ -Conjugation Degree of Metal-Organic Framework for Efficient Water Oxidation

Zhi-Min Zhai,<sup>ab</sup> Xiao-Gang Yang,<sup>\*b</sup> Zhao-Tong Yang,<sup>b</sup> Xiao-Min Lu,<sup>b</sup> and Lu-Fang Ma<sup>ab</sup>

- a. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
- b. College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China.

## \* Corresponding Author

Tel.: 86-379-68618328, Fax: 86-20-68618320. E-mail: yxg2233@126.com



Figure S1. PXRD patterns of Ni-BTC crystal samples.



Figure S2. Thermogravimetric analysis (TGA) of Ni-BTC.

The first weight loss in the range of 80-100 °C was attributed to the release of water molecules occupied in the pores, the following weight loss observed from 100 °C to 220 °C correspond to the loss of other coordinated water molecules, the third weight loss in the range of 220-280 °C is due to the loss of  $\mu_2$ -H<sub>2</sub>O (connect two Ni(II) ions). The host framework starts to decompose when heating above 280 °C. In all, the total weight loss of 19.9% up to about 280 °C correspond to the loss of coordinated water molecules (calcd 19.6%).



Figure S3. Photograph of Ni-BTC crystals under daylight.



Figure S4. FT-IR spectrum of Ni-BTC.



**Figure S5.** Ball-and-stick view of 3D network of Ni-BTC along [010] direction. Broken lines represent  $\pi \cdots \pi$  stacking between the centroid of benzene rings.



**Figure S6.** PXRD patterns of Ni-BTC powder sample after soaked in 0.1 M KOH aqueous solution for 48 h.



Figure S7. Cyclic voltammetry (CV) curves of Ni-BTC after 50 cycles.



(a)



(b)

**Figure S8.** PXRD patterns (a) and SEM image (b) of Ni-BTC after long-term oxygen evolution reaction (OER).



**Figure S9.** Cyclic voltammetry (CV) curves of Ni-BTC before and after long-term oxygen evolution reaction (OER).

| Samples                    | Ni-BTC                                                          |  |
|----------------------------|-----------------------------------------------------------------|--|
| Empirical formula          | C <sub>18</sub> H <sub>22</sub> Ni <sub>3</sub> O <sub>20</sub> |  |
| Formula weight             | 734.44                                                          |  |
| CCDC                       | 1933076                                                         |  |
| Temperature/K              | 290                                                             |  |
| Crystal system             | triclinic                                                       |  |
| Space group                | Pī                                                              |  |
| <i>a</i> / Å               | 10.0281(6)                                                      |  |
| b/ Å                       | 10.0845(5)                                                      |  |
| c/ Å                       | 13.1425(7)                                                      |  |
| α/ °                       | 75.763(5)                                                       |  |
| β/ °                       | 68.657(5)                                                       |  |
| γ/ °                       | 65.460(5)                                                       |  |
| $V/Å^3$                    | 1119.04(12)                                                     |  |
| Ζ                          | 2                                                               |  |
| $D ({\rm g}{\rm cm}^{-3})$ | 2.1795                                                          |  |
| $\mu (\mathrm{mm}^{-1})$   | 2.605                                                           |  |
| R <sub>int</sub>           | 0.0348                                                          |  |
| Goof                       | 1.049                                                           |  |
| $R_1 (I > 2\sigma (I))^a$  | 0.0507                                                          |  |
| $wR_2 (I > 2\sigma(I))^a$  | 0.1367                                                          |  |

 Table S1. Crystallographic data for Ni-BTC.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}$ 

| Atoms                | Length/Å  | Atoms                 | Length/Å  |
|----------------------|-----------|-----------------------|-----------|
| Ni(1)-O(2)           | 2.032(2)  | Ni(3)–O(8)#5          | 2.044(2)  |
| Ni(1)-O(2)#1         | 2.032(2)  | Ni(3)–O(8)            | 2.044(2)  |
| Ni(1)–O(3)#2         | 2.138(3)  | Ni(3)-O(11)#6         | 2.105(3)  |
| Ni(1)–O(3)#3         | 2.138(3)  | Ni(3)–O(11)#7         | 2.105(3)  |
| Ni(1)–O(13)          | 2.045(3)  | Ni(3)–O(17)#5         | 2.073(3)  |
| Ni(1)-O(13)#1        | 2.045(3)  | Ni(3)–O(17)           | 2.073(3)  |
| Ni(2)–O(1)           | 2.039(3)  | Ni(4)–O(7)            | 2.035(3)  |
| Ni(2)–O(5)#4         | 2.084(3)  | Ni(4)-O(10)#8         | 2.071(3)  |
| Ni(2)–O(13)          | 2.039(3)  | Ni(4)-O(17)#5         | 2.067(3)  |
| Ni(2)–O(14)          | 2.055(2)  | Ni(4)–O(18)           | 2.066(3)  |
| Ni(2)–O(15)          | 2.082(3)  | Ni(4)–O(19)           | 2.061(3)  |
| Ni(2)–O(16)          | 2.067(3)  | Ni(4)–O(20)           | 2.066(3)  |
| Atoms                | Angle/°   | Atoms                 | Angle/°   |
| O(2)#1-Ni(1)-O(2)    | 180.0     | O(11)#6–Ni(3)–O(8)    | 92.37(10) |
| O(3)#2-Ni(1)-O(2)    | 87.20(10) | O(11)#7–Ni(3)–O(8)    | 87.63(10) |
| O(3)#3-Ni(1)-O(2)    | 92.80(10) | O(11)#7–Ni(3)–O(8)#5  | 92.37(10) |
| O(3)#3-Ni(1)-O(2)#1  | 87.20(10) | O(11)#6–Ni(3)–O(8)#5  | 87.63(10) |
| O(3)#2-Ni(1)-O(2)#1  | 92.80(10) | O(11)#6–Ni(3)–O(11)#7 | 180.0     |
| O(3)#2-Ni(1)-O(3)#3  | 180.0     | O(17)#5-Ni(3)-O(8)    | 89.49(10) |
| O(13)#1-Ni(1)-O(2)#1 | 91.57(10) | O(17)#5-Ni(3)-O(8)#5  | 90.51(10) |
| O(13)-Ni(1)-O(2)#1   | 88.43(10) | O(17)–Ni(3)–O(8)      | 90.51(10) |
| O(13)#1-Ni(1)-O(2)   | 88.43(10) | O(17)–Ni(3)–O(8)#5    | 89.49(10) |
| O(13)–Ni(1)–O(2)     | 91.57(10) | O(17)#5-Ni(3)-O(11)#7 | 91.84(11) |
| O(13)-Ni(1)-O(3)#3   | 88.16(11) | O(17)–Ni(3)–O(11)#7   | 88.16(11) |
| O(13)#1-Ni(1)-O(3)#3 | 91.84(11) | O(17)#5-Ni(3)-O(11)#6 | 88.16(11) |
| O(13)–Ni(1)–O(3)#2   | 91.84(11) | O(17)-Ni(3)-O(11)#6   | 91.84(11) |
| O(13)#1-Ni(1)-O(3)#2 | 88.16(11) | O(17)-Ni(3)-O(17)#5   | 180.0     |
| O(13)#1-Ni(1)-O(13)  | 180.0     | O(10)#8-Ni(4)-O(7)    | 96.93(11) |
| O(5)#4–Ni(2)–O(1)    | 96.46(11) | O(17)#5–Ni(4)–O(7)    | 94.32(10) |
| O(5)#4-Ni(2)-O(1)    | 96.46(11) | O(17)#5-Ni(4)-O(7)    | 94.32(10) |

 Table S2. Partial bond length and bond Angle of Ni-BTC.

| O(13)-Ni(2)-O(1)   | 95.76(10)  | O(17)#5-Ni(4)-O(10)#8 | 88.33(11)  |
|--------------------|------------|-----------------------|------------|
| O(13)-Ni(2)-O(5)#4 | 88.66(11)  | O(18)-Ni(4)-O(7)      | 172.69(12) |
| O(14)–Ni(2)–O(1)   | 88.04(11)  | O(18)-Ni(4)-O(10)#8   | 87.90(12)  |
| O(14)-Ni(2)-O(5)#4 | 88.21(10)  | O(18)-Ni(4)-O(17)#5   | 91.29(12)  |
| O(14)–Ni(2)–O(13)  | 175.33(11) | O(19)-Ni(4)-O(7)      | 93.33(11)  |
| O(15)–Ni(2)–O(1)   | 170.94(11) | O(19)-Ni(4)-O(10)#8   | 169.37(12) |
| O(15)-Ni(2)-O(5)#4 | 90.41(11)  | O(19)-Ni(4)-O(17)#5   | 93.65(11)  |
| O(15)–Ni(2)–O(13)  | 90.29(11)  | O(19)-Ni(4)-O(18)     | 81.62(13)  |
| O(15)-Ni(2)-O(14)  | 86.27(11)  | O(20)-Ni(4)-O(7)      | 87.35(11)  |
| O(16)–Ni(2)–O(1)   | 89.76(11)  | O(20)-Ni(4)-O(10)#8   | 87.61(11)  |
| O(16)-Ni(2)-O(5)#4 | 173.78(11) | O(20)-Ni(4)-O(17)#5   | 175.76(11) |
| O(16)–Ni(2)–O(13)  | 90.86(12)  | O(20)-Ni(4)-O(18)     | 87.38(12)  |
| O(16)–Ni(2)–O(14)  | 91.88(11)  | O(20)-Ni(4)-O(19)     | 90.13(12)  |
| O(16)-Ni(2)-O(15)  | 83.39(11)  |                       |            |

Symmetry codes: #1: 2-x, 2-y, -z; #2: 2-x, 1-y, -z; #3: +x, 1+y, +z; #4: 1+x, +y, +z; #5: 1-x, -y, 1-z; #6: 1-x, 1-y, 1-z; #7:+x, -1+y, +z; #8:-1+x, +y, +z.