Supporting Information

Charge-transfer complexes of sulfur-rich acceptors derived from birhodanines

Shuxiang Fan,^a Yasuhiro Kiyota,^a Kodai Iijima,^a Suho Ryo,^a Tadashi Kawamoto,^a Yann Le Gal,^b Dominique Lorcy,^b and Takehiko Mori^a

^a Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan. E-mail: mori.t.ae@m.titech.ac.jp b Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) -UMR 6226, F-35000 Rennes, France.

Single-crystal structures

The X-ray diffraction data were collected by a Rigaku four-circle diffractometer (AFC-7R) with graphite-monochromatized Mo $K\alpha$ radiation ($\lambda = 0.71069$ Å). The structures were solved by the direct method (SIR 2004) and refined by the full-matrix least-squares method by applying anisotropic temperature factors for all non-hydrogen atoms using the SHELXL programs.^{S1-S3} The hydrogen atoms were placed at geometrically calculated positions.

Figure S1. Crystals of (a) (perylene)(SS-Et) and (b) (perylene)(OS-Et).

By comparing bond lengths with those of neutral **SS-Et** and **SS-Et**⁻ in $[Fe(Cp^*)_2][SS-Et]$,^{5a} we can estimate the charge-transfer degree ρ (Table S1). The results demonstrate ρ is practically zero (Fig. S2). In the **SS-Pr** complexes, we cannot estimate similarly, but the bond lengths strongly suggest ρ is close to zero as well (Table S2). Similar comparison is impossible in other complexes, but selected bond lengths are listed in Tables S3-S5. The change is in agreement with the LUMO (Fig. 1(a)); antibonding parts increase and bonding parts shrink.

Table S1. Selected experimental bond lengths (Å) for SS-Et, (pyrene)(SS-Et),(perylene)(SS-Et), (coronene)(SS-Et), and SS-Et⁻ in $[Fe(Cp^*)_2][SS-Et]$.

	SS-Et	(pyrene)(SS-Et)	(perylene)(SS-Et)	(coronene)(SS-Et)	SS-Et⁻
a : C–C	1.371(3)	1.371(4)	1.369(6)	1.368(4)	1.408(6)
b : C–C	1.465(5)	1.466(3)	1.457(4)	1.460(6)	1.418(4)
c : C–S	1.648(3)	1.631(2)	1.641(3)	1.632 (4)	1.679(5)
d : C–N	1.386(3)	1.384(3)	1.379(4)	1.389(4)	1.405(7)
e : N–C	1.370(4)	1.369(3)	1.372(4)	1.363(5)	1.359(5)
f:C–S	1.761(6)	1.742(3)	1.743(3)	1.743(4)	1.746(3)
g : C–S	1.751(4)	1.739(2)	1.742(3)	1.743(4)	1.752(5)
h : C–S	1.641(2)	1.636(2)	1.638(3)	1.643(3)	1.665(7)

Figure S2. Estimation of charge-transfer degree ρ from the bond lengths.

Table S2.Selected experimental bond lengths (Å) for SS-Pr, (pyrene)(SS-Pr),(perylene)(SS-Pr), and (coronene)(SS-Pr).

		Sh SadN Pr N b gSf S	Pr S
	SS-Pr	(pyrene)(SS-Pr)	(perylene)(SS-Pr)
a : C–C	1.374	1.375	1.378
b : C–C	1.460	1.460	1.453
c : C–S	1.644	1.641	1.636
d : C–N	1.386	1.379	1.394
e : N–C	1.374	1.365	1.373
f:C–S	1.756	1.748	1.742
g:C–S	1.750	1.744	1.745
h : C–S	1.636	1.639	1.636

Table S3 Selected experimental bond lengths (Å) for OS-Et, (pyrene)(OS-Et), (perylene)(OS-Et), and (coronene)(OS-Et).

	OS-Et	(pyrene)(OS-Et)	(perylene)(OS-Et)
a : C–C	1.348	1.344	1.354
b : C–C	1.479	1.485	1.483
c : C–O	1.212	1.202	1.208
d : C–N	1.381	1.381	1.389
e : N–C	1.371	1.374	1.377
f:C–S	1.755	1.741	1.756
g:C–S	1.733	1.737	1.720
h : C–S	1.626	1.630	1.612

Table S4 Selected experimental bond lengths (Å) for OS-Pr, (pyrene)(OS-Pr), (perylene)(OS-Pr), and (coronene)(OS-Pr).

Table S5 Selected experimental bond lengths (Å) for SO-Et, (pyrene)(SO-Et), (perylene)(SO-Et), and (coronene)(SO-Et).

	SO-Et	(pyrene)(SO-Et)	(perylene)(SO-Et)	(coronene)(SO-Et)
a : C–C	1.369	1.366	1.353	1.367
b : C–C	1.473	1.477	1.459	1.472
c : C–S	1.641	1.633	1.643	1.635
d : C–N	1.371	1.366	1.365	1.371
e : N–C	1.386	1.386	1.391	1.378
f: C - S	1.777	1.766	1.763	1.775
g:C–S	1.749	1.741	1.758	1.746
h : C–O	1.208	1.204	1.208	1.206

Single-crystal transistors

Microscopic images of single-crystal transistors are shown in Fig. S3. Transistor characteristics of (perylene)(**SO-Et**) are shown in Fig. S4.

Figure S4. Transfer characteristics of a (perylene)(**SO-Et**) single-crystal transistor measured under vacuum, where $L/W = 73/23 \mu m$.

Calculations of transfer integrals

	LUMO+1	LUMO	t _{AA}	HOMO	HOMO-1	$t_{\rm DD}$
	(eV)	(eV)	(meV)	(eV)	(eV)	(meV)
(pyrene)(SS-Et)	-4.2602	-4.2790	44 .4	-5.6882	-5.7031	109.8
(perylene)(SS-Et)	-4.2820	-4.2834	195.4	-5.3023	-5.3288	82.3
(coronene)(SS-Et)	-4.3176	-4.3191	216.0	-5.6731	-5.6823	117.0
(pyrene)(SS-Pr)	-4.2707	-4.2737	13.1	-5.6925	-5.7076	61.5
(perylene)(SS-Pr)	-4.2780	-4.2811	5.1	-5.3219	-5.3588	56.0
(pyrene)(OS-Et)	-3.7685	-3.7828	3.3	-5.6901	-5.7056	66.4
(perylene)(OS-Et)	-3.7139	-3.7281	3.7	-5.2978	-5.3248	19.1
(perylene)(OS-Pr)	-3.7774	-3.7889	0.9	-5.2685	-5.2941	49.5
(pyrene)(SO-Et)	-3.9421	-3.9528	43.6	-5.6878	-5.7211	45.6
(perylene)(SO-Et)	-3.9675	-3.9920	27.0	-5.3330	-5.3652	54.6
(coronene)(SO-Et)	-3.9286	-3.9428	4.3	-5.7462	-5.7571	11.9
<pre>(coronene)(SS-Et) (pyrene)(SS-Pr) (perylene)(SS-Pr) (pyrene)(OS-Et) (perylene)(OS-Et) (pyrene)(OS-Pr) (pyrene)(SO-Et) (perylene)(SO-Et) (coronene)(SO-Et)</pre>	-4.3176 -4.2707 -4.2780 -3.7685 -3.7139 -3.7774 -3.9421 -3.9675 -3.9286	-4.3191 -4.2737 -4.2811 -3.7828 -3.7281 -3.7889 -3.9528 -3.9920 -3.9428	216.0 13.1 5.1 3.3 3.7 0.9 43.6 27.0 4.3	$ \begin{array}{r} -5.6731 \\ -5.6925 \\ -5.3219 \\ -5.6901 \\ -5.2978 \\ -5.2685 \\ -5.6878 \\ -5.3330 \\ -5.7462 \\ \end{array} $	$ \begin{array}{c} -5.6823 \\ -5.7076 \\ -5.3588 \\ -5.7056 \\ -5.3248 \\ -5.2941 \\ -5.7211 \\ -5.3652 \\ -5.7571 \\ \end{array} $	

 Table S6.
 Transfers calculated from dimers.

Table S7. Effective transfers calculated by the triad method.

	LUMO+1	LUMO	НОМО	HOMO-1	$t_{\rm e}^{\rm eff}$	$t_{\rm h}^{\rm eff}$
	(eV)	(eV)	(eV)	(eV)	(meV)	(meV)
(pyrene)(SS-Et)	-4.2602	-4.2790	-5.6882	-5.7031	9.4	7.5
(perylene)(SS-Et)	-4.2820	-4.2834	-5.3023	-5.3288	0.7	13.3
(coronene)(SS-Et)	-4.3176	-4.3191	-5.6731	-5.6823	0.8	4.6
(pyrene)(SS-Pr)	-4.2707	-4.2737	-5.6925	-5.7076	1.5	7.6
(perylene)(SS-Pr)	-4.2780	-4.2811	-5.3219	-5.3588	1.6	18.5
(pyrene)(OS-Et)	-3.7685	-3.7828	-5.6901	-5.7056	7.2	7.8
(perylene)(OS-Et)	-3.7139	-3.7281	-5.2978	-5.3248	7.1	13.5
(perylene)(OS-Pr)	-3.7774	-3.7889	-5.2685	-5.2941	5.8	12.8
(pyrene)(SO-Et)	-3.9421	-3.9528	-5.6878	-5.7211	5.4	16.7
(perylene)(SO-Et)	-3.9675	-3.9920	-5.3330	-5.3652	12.3	16.1
(coronene)(SO-Et)	-3.9286	-3.9428	-5.7462	-5.7571	7.1	5.4

Table S8.	Energy difference, transfe	ers, and contri	ibutions to supere	xchange transfers
(meV) in the	e partition calculations.			

(a) (pyre	ene)(SS-Et)						
Electron				Hole			
AL→	$E_i - E_0$	t	$t^2/(E_i - E_0)$	$\rm D~H{ ightarrow}$	$E_i - E_0$	t	$t^2/(E_i - E_0)$
Н	1216	46	2	L	-1216	46	2
H-1	2084	128	8	Н	911	45	-2
Н-2	2722	117	-5	H-1	972	31	1
				Н-3	1204	45	2
				H–4	1340	55	-2
Total			4				1
(b) (peryle	ene)(SS-Et)						
Electron				Hole			
A L→	$E_i - E_0$	t	$t^2/(E_i-E_0)$	$\rm D~H{ ightarrow}$	$E_i - E_0$	t	$t^2/(E_i-E_0)$
L+1	-3245	94	-3	L+1	-2708	17	0
Н	833	1	0	L	-833	24	-1
Н-2	2566	118	5	Н	1273	56	2
				Н-2	1580	43	-1
Total			2				1
(c) (coron	ene)(SS-Et)						
Electron				Hole			
AL→	$E_i - E_0$	t	$t^2/(E_i-E_0)$	$\rm D~H{\rightarrow}$	$E_i - E_0$	t	$t^2/(E_i-E_0)$
Н	1193	26	0	L	-1193	1	-1
H-1	1331	45	-2	Н-3	1344	13	-1
Н-2	2517	102	4	H–4	1590	22	2
Н-3	2558	116	5				
Total			8				1

(d) (pyrene)(SS-Pr)

Electron				Hole			
A L \rightarrow	$E_i - E_0$	t	$t^2/(E_i-E_0)$	$\rm D~H{\rightarrow}$	$E_i - E_0$	t	$t^2/(E_i-E_0)$
L	-2357	100	4	L+1	-3130	131	-5
Н	1257	202	33	L	-1257	202	33
Н-2	2736	117	-5	Н	840	82	5
Н-3	3165	199	-12	H-4	1510	197	-26
H-4	3860	171	-8				
Total			12				8

(e) (perylene)(**SS-Pr**)

Electron				Hole			
A L \rightarrow	$E_i - E_0$	t	$t^2/(E_i-E_0)$	$\rm D~H{\rightarrow}$	$E_i - E_0$	t	$t^2/(E_i-E_0)$
L	-1879	54	2	L	-852	69	6
Н	852	69	6	Н-2	1503	58	2
Н-3	2654	119	-5	Н-3	1658	55	2
Total			1				8

(f) (pyrene)(**OS-Et**)

Electron				Hole			
A L \rightarrow	$E_i - E_0$	t	$t^2/(E_i-E_0)$	$\rm D~H{\rightarrow}$	$E_i - E_0$	t	$t^2/(E_i-E_0)$
Н	1700	63	-2	L	-1700	63	2
H-1	2565	77	2	Н	975	77	-7
Н-2	3203	57	-1	H-1	1076	57	1
H-4	4350	112	3	Н-3	1993	112	6
Total			2				2

(g) (perylene)(**OS-Et**)

Electron				Hole			
A L \rightarrow	$E_i - E_0$	t	$t^2/(E_i-E_0)$	$\rm D~H{\rightarrow}$	$E_i - E_0$	t	$t^2/(E_i-E_0)$
L+1	-2706	50	-1	L+1	-3271	70	-2
Н	1697	85	4	L	-1697	85	4
Н-2	3203	62	1	Н	-975	37	-1
Н-3	3651	66	-1	Н-2	1219	37	1
Total			2				2

(h) (perylene)(**OS-Pr**)

Electron	n Hole						
$A L \rightarrow$	$E_i - E_0$	t	$t^2/(E_i-E_0)$	$\rm D~H{\rightarrow}$	$E_i - E_0$	t	$t^2/(E_i-E_0)$
Н	1309	77	5	L+1	-2924	70	-2
H–4	3155	70	-2	L	-1309	77	5
Total			2				2

(i) (pyrene)(SO-Et)

Electron	Hole						
A L \rightarrow	$E_i - E_0$	t	$t^2/(E_i-E_0)$	$\rm D~H{\rightarrow}$	$E_i - E_0$	t	$t^2/(E_i-E_0)$
Н	1503	35	1	L	-1503	35	1
H-1	2371	91	-3	H–2	1276	58	3
H-2	3010	94	3	Н-3	1950	63	2
Total			0				5

(j) (perylene)(SO-Et)

Electron		Hole					
A L \rightarrow	$E_i - E_0$	t	$t^2/(E_i-E_0)$	$\rm D~H{\rightarrow}$	$E_i - E_0$	t	$t^2/(E_i-E_0)$
Н	1433	124	11	L	-1433	124	11
H-1	2301	73	-2	Н-3	1939	75	3
Н-3	3388	92	-2				
Total			6				13

(k) (coronene)(SO-Et)

Electron	Hole							
$A L \rightarrow$	$E_i - E_0$	t	$t^2/(E_i-E_0)$	$\rm D~H{\rightarrow}$	$E_i - E_0$	t	$t^2/(E_i-E_0)$	
Н	1445	105	8	L	-1445	105	8	
H-1	1585	56	2	Н	1052	94	-8	
Н-3	2809	115	-5	Н-2	1276	59	3	
Total			5				2	

The observed mobilities taken from Table 3 are roughly correlated with the largest t_{AA} , t_{DD} , or t_e^{eff} taken from Table 4 (Fig. S4).

Figure S5. Correlation of observed mobilities and calculated transfers.

References

- M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 2005, 38, 381.
- S2 G. M. Sheldrick and IUCr, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3.
- S3 G. M. Sheldrick and IUCr, Acta Crystallogr. Sect. A Found. Adv., 2015, 71, 3.