Supporting Information

Two Scandium coordination polymers: rapid synthesis and

catalytic property

Ziqian Zhu,
a Yufang Tao, a Yansong Jiang, a Liying Zhang, b Jianing Xu, a Li
 Wang *a and Yong Fan *a

^a College of Chemistry, Jilin University, Changchun 130012, P. R. China

email: lwang99@jlu.edu.cn, mrfy@jlu.edu.cn.

^b College of Food Engineering, Jilin Engineering Normal University, Changchun

130052, P. R. China

Table of Contents

Fig. S1 The PXRD patterns for 1 ^h and 1 ^m .	S3
Fig. S2 The PXRD patterns for 2^{h} and 2^{m} .	S3
Fig. S3 The IR spectrum of 1.	S4
Fig. S4 The IR spectrum of 2.	S4
Fig. S5 The TGA curve of 1 measured in air atmosphere.	S5
Fig. S6 The TGA curve of 2 measured in air atmosphere.	S5
Fig. S7 The study on the recycling of 2^m .	S 6
Fig. S8 The ¹ H NMR data for the cyanosilylation reaction products	S10-16
Table S1 The crystal data and structure refinement for 1 and 2.	S7
Table S2 The selected bond length and angle data for 1 and 2.	S8-S9

Fig. S1 PXRD patterns for 1^h and 1^m.

Fig. S2 PXRD patterns for 2^h and 2^m.

Fig. S3 The IR spectrum of 1.

Fig. S4 The IR spectrum of 2.

Fig. S5 The TGA curve for 1.

Fig. S6 The TGA curve for 2.

Fig. S7 The study on the recycling of 2^m for the heterogeneous cyanosilylation.

Complex	1	2
Formula	$C_{15}H_{10}N_5O_9Sc$	$C_7H_8N_2O_9Sc$
Fw (g·mol ⁻¹)	449.24	309.1
Temperature (K)	293(2)	293(2)
Wave length (Å)	0.71073	0.71073
Crystal system	triclinic	triclinic
Space group	P-1	P-1
<i>a</i> (Å)	12.1982(9)	8.0179(5)
<i>b</i> (Å)	12.6561(10)	8.1281(6)
<i>c</i> (Å)	17.4615(13)	10.1235(8)
α (°)	79.068(5)	67.896(4)
β (°)	69.577(4)	77.329(5)
γ (°)	65.464(4)	87.356(4)
Volume (Å ³)	2295.0(3)	595.89(7)
Ζ	4	2
$D_{\text{calc}}(g \cdot \text{cm}^{-3})$	1.300	1.617
F (000)	912	292
θ range (°)	1.771 to 25.075	2.225 to 25.018
Index range (°)	-14<=h<=14	-9<=h<=9
	-15<=k<=13	-8<=k<=9
	-19<=1<=20	-10<=1<=12
Refl. Collected/ unique	13126 / 8125	3361/2087
R _{int}	0.0537	0.0332
Completeness	97.9 %	96.6 %
Goodness-of-fit on F^2	0.784	1.085
$R_1, wR_2 \left[I > 2\sigma(I) \right]$	0.0506, 0.1099	0.0317, 0.0932
R_1 , wR_2 (all data)	0.1154, 0.1229	0.0352, 0.0957
Largest diff. peak and hole (eÅ-3)	0.456, -0.269	0.777, -0.275
CCDC Number	1054439	1054440

 Table S1 The crystal data and structure refinement for 1 and 2.

 $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|. \ wR_2 = [\sum [w (F_o^2 - F_c^2)^2] / \sum [w (F_o^2)^2]]^{1/2}$

		1	
N(1)-Sc(1)	2.422(3)	O(1)-Sc(2)	2.085(3)
N(3)-Sc(1)	2.497(4)	O(7)-Sc(2)#3	2.133(3)
N(5)-Sc(2)	2.464(3)	O(9)-Sc(2)	2.113(3)
N(7)-Sc(2)#3	2.438(3)	O(11)-Sc(2)	2.142(3)
O(2)-Sc(1)	2.124(3)	O(15)-Sc(2)	2.035(3)
O(6)-Sc(1)	2.117(3)	Sc(1)-O(18)#4	2.064(3)
O(12)-Sc(1)	2.163(3)	O(13)-Sc(1)	2.033(3)
O(13)#2-Sc(1)-O(18)#4	177.16(13)	O(15)#1-Sc(2)-O(1)	179.56(13)
O(13)#2-Sc(1)-O(6)	90.39(13)	O(15)#1-Sc(2)-O(9)	92.22(12)
O(18)#4-Sc(1)-O(6)	92.01(12)	O(1)-Sc(2)-O(9)	87.44(12)
O(13)#2-Sc(1)-O(2)	85.60(12)	O(15)#1-Sc(2)-O(7)#3	91.89(12)
O(18)#4-Sc(1)-O(2)	93.52(12)	O(1)-Sc(2)-O(7)#3	88.55(12)
O(6)-Sc(1)-O(2)	140.28(11)	O(9)-Sc(2)-O(7)#3	141.93(11)
O(13)#2-Sc(1)-O(12)	93.39(12)	O(15)#1-Sc(2)-O(11)	91.89(12)
O(18)#4-Sc(1)-O(12)	83.78(11)	O(1)-Sc(2)-O(11)	88.21(12)
O(6)-Sc(1)-O(12)	140.70(12)	O(9)-Sc(2)- $O(11)$	141.40(12)
O(2)-Sc(1)-O(12)	79.02(11)	O(7)#3-Sc(2)-O(11)	76.20(11)
O(13)#2-Sc(1)-N(1)	94.23(12)	O(15)#1-Sc(2)-N(7)#3	87.56(12)
O(18)#4-Sc(1)-N(1)	87.96(12)	O(1)-Sc(2)-N(7)#3	92.61(12)
O(6)-Sc(1)-N(1)	72.01(11)	O(9)-Sc(2)-N(7)#3	73.26(11)
O(2)-Sc(1)-N(1)	68.92(11)	O(7)#3-Sc(2)-N(7)#3	69.13(11)
O(12)-Sc(1)-N(1)	146.30(12)	O(11)-Sc(2)-N(7)#3	145.28(12)
O(13)#2-Sc(1)-N(3)	86.20(12)	O(15)#1-Sc(2)-N(5)	88.70(12)
O(18)#4-Sc(1)-N(3)	93.33(12)	O(1)-Sc(2)-N(5)	90.92(11)
O(6)-Sc(1)-N(3)	67.23(12)	O(9)-Sc(2)-N(5)	68.90(11)
O(2)-Sc(1)-N(3)	151.24(12)	O(7)#3-Sc(2)-N(5)	149.04(12)
O(12)-Sc(1)-N(3)	74.01(12)	O(11)-Sc(2)-N(5)	72.85(12)
N(1)-Sc(1)-N(3)	139.24(12)	N(7)#3-Sc(2)-N(5)	141.78(12)

Table S2. The selected bond length [Å] and angle $[\circ]$ data for 1 and 2.

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1; #2 -x+1,-y+1,-z; #3 -x,-y+2,-z+1; #4 -x+2,-y,-z

2					
Sc(1)-O(1)	2.1529(17)	Sc(1)-O(5)	2.1402(16)		
Sc(1)-O(2)	2.2164(18)	Sc(1)-O(6)	2.2767(16)		
Sc(1)-O(3)	2.1601(18)	Sc(1)-N(1)	2.4463(19)		
Sc(1)-O(4)	2.2068(18)	Sc(1)-N(2)	2.480(2)		
O(1)-Sc(1)-O(2)	88.11(7)	O(5)-Sc(1)-O(6)	133.95(6)		
O(1)-Sc(1)-O(3)	86.81(7)	O(1)-Sc(1)-N(1)	68.87(6)		
O(1)-Sc(1)-O(4)	95.37(7)	O(2)-Sc(1)-N(1)	75.85(6)		
O(1)-Sc(1)-O(6)	74.04(6)	O(3)-Sc(1)-N(1)	141.74(7)		
O(2)-Sc(1)-O(6)	143.92(6)	O(4)-Sc(1)-N(1)	70.53(6)		
O(3)-Sc(1)-O(2)	74.21(7)	O(5)-Sc(1)-N(1)	76.81(6)		
O(3)-Sc(1)-O(4)	143.48(7)	O(6)-Sc(1)-N(1)	123.23(6)		
O(3)-Sc(1)-O(6)	73.72(6)	O(1)-Sc(1)-N(2)	145.16(7)		
O(4)-Sc(1)-O(2)	142.19(7)	O(2)-Sc(1)-N(2)	117.00(7)		
O(4)-Sc(1)-O(6)	71.94(6)	O(3)-Sc(1)-N(2)	78.26(7)		
O(5)-Sc(1)-O(1)	144.99(6)	O(4)-Sc(1)-N(2)	79.51(7)		
O(5)-Sc(1)-O(2)	76.79(6)	O(5)-Sc(1)-N(2)	68.40(6)		
O(5)-Sc(1)-O(3)	118.04(7)	O(6)-Sc(1)-N(2)	71.61(6)		
O(5)-Sc(1)-O(4)	79.15(6)				

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z; #2 -x+1,-y,-z+1; #3 -x+2,-y,-z+1

Fig. S8 The ¹H NMR data for the cyanosilylation reaction products.

¹H NMR (400 MHz, CD₃CN) δ = 8.30 (d, J = 7.6 Hz, 2H), 7.77 (d, J = 7.6 Hz, 2H), 5.89 (s, 1H), 0.27 (s, 9H).

¹H NMR (400 MHz, CD₃CN) δ = 7.84 (d, J = 7.2 Hz, 2H), 7.69 (d, J = 7.6 Hz, 2H), 5.83 (s, 1H), 0.25 (s, 9H).

S10

¹H NMR (400 MHz, CD₃CN) δ = 7.80 (d, J = 8.0 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 5.84 (s, 1H), 0.25 (s, 9H).

¹H NMR (400 MHz, CD₃CN) δ = 7.56 (m, 2H), 7.22 (t, J = 8.2 Hz, 2H), 5.73 (s, 1H), 0.23 (s, 9H).

¹H NMR (400 MHz, CD₃CN) δ = 8.30 (d, J = 7.6 Hz, 2H), 7.77 (d, J = 7.6 Hz, 2H), 5.89 (s, 1H), 0.27 (s, 9H).

¹H NMR (400 MHz, CD₃CN) δ = 7.65 (d, J = 7.6 Hz, 2H), 7.45 (d, J = 7.6 Hz, 2H), 5.72 (s, 1H), 0.23 (s, 9H).

¹H NMR (400 MHz, CD₃CN) δ = 7.44 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 7.6 Hz, 2H), 5.66 (s, 1H), 3.83 (s, 3H), 0.21 (s, 9H).

¹H NMR (400 MHz, CD₃CN) δ = 7.41 (d, J = 7.2 Hz, 2H), 7.29 (d, J = 7.2 Hz, 2H), 5.68 (s, 1H), 2.39 (s, 3H), 0.21 (s, 9H).

¹H NMR (400 MHz, CDCl₃) δ = 4.41 (t, J = 6.6 Hz, 1H), 1.81 (dd, J = 15.2, 6.8 Hz, 2H), 1.43 (m, 4H), 0.95 (t, J = 7.2 Hz, 3H), 0.23 (s, 9H).

¹H NMR (400 MHz, CDCl₃) δ = 7.41 (m, 5H), 6.84 (d, J = 15.6 Hz, 1H), 6.22 (dd, J = 16.0, 6.0 Hz 1H), 5.15 (dd, J = 6.0, 1.2 Hz 1H), 0.28 (s, 9H).

¹H NMR (400 MHz, CDCl₃) δ = 7.41 (m, 4H), 7.17 (t, J = 7.4 Hz, 1H), 7.04 (m, 4H), 5.49 (s, 1H), 0.26 (s, 9H).

¹H NMR (400 MHz, CDCl₃) δ = 8.20 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 7.2 Hz, 1H), 7.64 (m, 1H), 7.59 (m, 1H), 7.51 (m, 1H), 6.08 (s, 1H), 0.23 (s, 9H).

¹H NMR (400 MHz, CDCl₃) δ = 7.39 (dd, J = 5.2, 1.2 Hz, 1H), 7.21 (d, J = 3.2 Hz, 1H), 7.03 (dd, J = 4.8, 3.6 Hz, 1H), 5.75 (s, 1H), 0.26 (s, 9H).