Tailoring the structures and gas adsorption properties of copper-bent diisophthalate frameworks by substituent-driven ligand conformation regulation strategy

Minghui He, Xiaoxia Gao, Tingting Xu, Zhenzhen Jiang, and Yabing He* Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: <u>heyabing@zjnu.cn</u>

Fig. S1 Electronic photographs of (a) ZJNU-101, (b) ZJNU-102, and (c) ZJNU-103.

Fig. S2 Comparison of the simulated (black) and experimental (red) PXRD patterns of (a) **ZJNU-101**, (b) **ZJNU-102**, and (c) **ZJNU-103**.

Fig. S3 TGA curves of (a) ZJNU-101, (b) ZJNU-102, and (c) ZJNU-103 under N_2 atmosphere.

Fig. S4 Comparison of FTIR spectra of (a) ZJNU-101 and its corresponding ligand H_4L1 , (b) ZJNU-102 and its corresponding ligand H_4L2 , and (c) ZJNU-103 and its corresponding ligand H_4L3 .

Fig. S5 Topological structural analyses of ZJNU-101.

Fig. S6 Topological structural analyses of ZJNU-102.

Fig. S7 Topological structural analyses of ZJNU-103.

 $S_{\text{BET}} = \frac{1}{(8.43265 \times 10^{-7} + 0.00154)}/(22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2825 \text{ m}^2 \text{ g}^{-1}}{S_{\text{Langmuir}}} = \frac{(1/0.00141)}{(22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 3087 \text{ m}^2 \text{ g}^{-1}}{2}$ BET constant $C = 1 + 0.00154/8.43265 \times 10^{-7} = 1827$

$$(p/p_o)_{n_m} = \frac{1}{\sqrt{C}+1} = 0.02286$$

Fig. S8 The consistency plot (a), BET surface area plot (b), and Langmuir surface area plot (c) for **ZJNU-101**.

 $S_{\text{BET}} = \frac{1}{(4.06687 \times 10^{-6} + 0.00168)} \times 22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 2585 \text{ m}^2 \text{ g}^{-1}}{S_{\text{Langmuir}}} = \frac{(1/0.0015)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 2902 \text{ m}^2 \text{ g}^{-1}}$ BET constant $C = 1 + 0.00168 \times 4.06687 \times 10^{-6} = 414$

$$(p/p_o)_{n_m} = \frac{1}{\sqrt{C}+1} = 0.04684$$

Fig. S9 (a) The consistency plot, (b) BET surface area plot, and (c) Langmuir surface area plot for ZJNU-102.

$$(p/p_o)_{n_m} = \frac{1}{\sqrt{C}+1} = 0.0265$$

Fig. S10 (a) The consistency plot, (b) BET surface area plot, and (c) Langmuir surface area plot for **ZJNU-103**.

Fig. S11 (a) C_2H_2 , (b) CO_2 , and (c) CH_4 isotherms of **ZJNU-101** at three different temperatures of 278 K, 288 K, and 298 K. The solid and open symbols represent adsorption and desorption, respectively.

Fig. S12 (a) C_2H_2 , (b) CO_2 , and (c) CH_4 isotherms of ZJNU-102 at three different temperatures of 278 K, 288 K, and 298 K. The solid and open symbols represent adsorption and desorption, respectively.

Fig. S13 (a) C_2H_2 , (b) CO_2 , and (c) CH_4 isotherms of ZJNU-103 at three different temperatures of 278 K, 288 K, and 298 K. The solid and open symbols represent adsorption and desorption, respectively.

Fig. S14 The isosteric heat of C_2H_2 , CO_2 , and CH_4 adsorption in (a) ZJNU-101, (b) ZJNU-102, and (c) ZJNU-103.

Fig. S15 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-101** with the fitted isotherms at 278 K, 288 K, and 298 K.

Fig. S16 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-102** with the fitted isotherms at 278 K, 288 K, and 298 K.

Fig. S17 Comparison of the pure-component isotherm data for (a) C_2H_2 , (b) CO_2 , and (c) CH_4 in **ZJNU-103** with the fitted isotherms at 278 K, 288 K, and 298 K.

Fig. S18 The IAST-predicted adsorption selectivity for the equimolar (a) C_2H_2 -CH₄, and (b) CO₂-CH₄ binary gas mixtures in **ZJNU-101** at three different temperatures of 298 K, 288 K, and 278 K.

Fig. S19 The IAST-predicted adsorption selectivity for the equimolar (a) C_2H_2 -CH₄, and (b) CO₂-CH₄ binary gas mixtures in **ZJNU-102** at three different temperatures of 298 K, 288 K, and 278 K.

Fig. S20 The IAST-predicted adsorption selectivity for the equimolar (a) C_2H_2 -CH₄, and (b) CO₂-CH₄ binary gas mixtures in **ZJNU-103** at three different temperatures of 298 K, 288 K, and 278 K.

Fig. S21 ¹H and ¹³C NMR spectra.

MOFs	ZJNU-101	ZJNU-102	ZJNU-103		
Empirical formula	$C_{40}H_{58}Cu_2N_6O_{17}$	$C_{44}H_{65}Cu_2N_7O_{18}$	$C_{37}H_{52}Cu_2N_6O_{16}$		
Formula weight	1022.00	1107.11	963.95		
λ (Å)	1.54178	0.71073	0.71073		
Crystal system	Orthorhombic	Cubic	Hexagonal		
Space group	<i>C</i> mc2(1)	<i>Pm-3</i>	P6 ₃ /mmc		
	<i>a</i> = 24.9038(10) Å	<i>a</i> = 25.3148(4) Å	a = 18.5762(5) Å		
	<i>b</i> = 33.4493(12) Å	<i>b</i> = 25.3148(4) Å	b = 18.5762(5) Å		
TT-:411 J:	c = 18.3388(7) Å	c = 25.3148(4) Å	c = 23.8042(16) Å		
Unit cell dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$		
	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$		
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 120^{\circ}$		
$V(\text{\AA}^3)$	15276.5(10)	16222.7(8)	7113.7(6)		
Ζ	12	12	6		
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.333	1.360	1.350		
$\mu (\mathrm{mm}^{-1})$	1.632	0.860	0.966		
<i>F</i> (000)	6408	6960	3011		
θ range for data collection (°)	2.212 to 66.489	2.276 to 28.279	2.673 to 24.994		
	$-28 \le h \le 20$	$-33 \le h \le 21$	$-16 \le h \le 22$		
Limiting indices	$-39 \le k \le 39$	$-33 \le k \le 28$	$-22 \le k \le 22$		
	$-21 \le l \le 21$	$-30 \le l \le 28$	$-28 \le l \le 28$		
Reflections collected / unique	30571 / 11714	50295 / 7179	74827 / 2361		
R _{int}	0.0448	0.0640	0.0594		
Definement method	Full-matrix least-squares	Full-matrix least-squares	Full-matrix least-squares		
Kennement method	on F^2	on F^2	on F^2		
Data/restraints/parameters	11714 / 1 / 466	7179 / 0 / 176	2361 / 8 / 86		
Goodness-of-fit on F^2	1.004	1.021	1.089		
Final Dindiana [I > 2-(D)]	$R_1 = 0.0447$	$R_1 = 0.1166$	$R_1 = 0.0941$		
Final K mulces $[I > 20(I)]$	$wR_2 = 0.1253$	$wR_2 = 0.3343$	$wR_2 = 0.3623$		
	$R_1 = 0.0470$	$R_1 = 0.1470$	$R_1 = 0.1159$		
R indices (all data)	$wR_2 = 0.1285$	$wR_2 = 0.3882$	$wR_2 = 0.4170$		
Largest diff. peak and hole (e [.] Å ⁻³)	0.974 and -0.450	2.326 and -1.033	2.182 and -1.245		
CCDC	1895248	1895249	1895250		

Table S1 Crystal data and structure refinement for ZJNU-101, ZJNU-102, andZJNU-103.

Table S2 Langmuir-Freundich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in **ZJNU-101**.

Guest	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-ν}	v	R^2		
C_2H_2	20.56898	1.83018×10 ⁻⁵	18.245	0.65466	0.99922	
CO ₂	21.01804	2.96428×10 ⁻⁷	22.109	1	0.99997	
CH ₄	13.18114	1.6832×10 ⁻⁶	14.953	1	0.99995	

Table S3 Langmuir-Freundlich parameters for adsorption of C_2H_2 , CO_2 , and CH_4 in **ZJNU-102**.

Guest	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-ν}	E (kJ mol ⁻¹)	v	R^2		
C_2H_2	14.00042	1.92974×10 ⁻⁵	18.863	0.69987	0.99967		
CO ₂	14.88163	3.02368×10 ⁻⁷	23.168	1	0.99976		
CH ₄	13.35692	1.39833×10 ⁻⁶	15.289	1	0.99997		

Table S4 Langmuir-Freundlich parameters for adsorption of C₂H₂, CO₂, and CH₄ in **ZJNU-103**.

Guest	$q_{\rm sat}$ (mmol g ⁻¹)	b_0 (kPa) ^{-ν}	E (kJ mol ⁻¹)	v	R^2
C ₂ H ₂	14.60785	5.96129×10 ⁻⁶	21.720	0.75546	0.99977
CO ₂	17.14944	3.96943×10 ⁻⁷	22.407	1	0.99976
CH ₄	10.27678	1.18441×10 ⁻⁶	16.689	1	0.99998

Table S5 Summaries of textural parameters (obtained from N_2 adsorption isotherms at 77 K) and gas adsorption properties of three MOFs investigated in this work.

5 /C		V	V D	C ₂ H ₂ uptake ^{<i>a</i>}		CO ₂ uptake ^{<i>a</i>}		CH ₄ uptake ^a		C ₂ H ₂ /CH ₄ IAST selectivity ^a			CO ₂ /CH ₄ IAST selectivity ^a					
MOFs	$S_{\text{BET}}/S_{\text{Langmuir}}$	$(am^3 a^{-1})$	$D_{\rm c}$	$(\mathrm{cm}^3 \mathrm{g}^{-1}, \mathrm{STP})$		$(\mathrm{cm}^3 \mathrm{g}^{-1}, \mathrm{STP})$			(cm ³ g ⁻¹ , STP)		(v/v = 1:1)			(<i>v</i> / <i>v</i> = 1:1)				
	(mg)	(cm g)	(g chi)	298 K	288 K	278 K	298 K	288 K	278 K	298 K	288 K	278 K	298 K	288 K	278 K	298 K	288 K	278 K
ZJNU-101	2825/3087	1.101	0.690	173.5	204.9	238.7	90.8	115.6	147.0	20.6	25.2	30.6	31.5	35.3	40.4	5.27	5.88	6.66
ZJNU-102	2585/2902	1.041	0.687	157.7	180.1	203.3	91.0	113.6	139.2	19.9	24.4	29.9	30.0	32.6	36.1	5.86	6.58	7.46
ZJNU-103	2132/2502	0.894	0.762	184.5	209.8	233.9	101.3	128.4	156.0	22.2	27.4	34.0	36.2	42.3	51.0	6.01	6.66	7.48

^{*a*} at 800 mmHg; S_{BET} = BET surface area; S_{Langmuir} = Langmuir surface area; V_{p} = pore volume; D_{c} = framework density (without solvent molecules and terminal water

molecules) derived from single-crystal X-ray structures;