## Carboxylates *Directed* Versatile Structures of Ten 1D→3D Ni(II)

## **Coordination Polymers: Fluorescent Behaviors and**

## Electrochemical Activities<sup>†</sup>

Guocheng Liu<sup>a,b</sup>, Yan Li<sup>a</sup>, Zhenjie Lu<sup>c</sup>, Xiaowu Li<sup>b</sup>, Xiuli Wang<sup>a\*</sup>, Xiang Wang<sup>a</sup>, Xingxing Chen<sup>c\*</sup>

**Supporting Information** 

|                    | 1          |                   |            |
|--------------------|------------|-------------------|------------|
| Ni(1)–N(1)         | 2.1044(16) | Ni(1)–N(1)A       | 2.1045(16) |
| Ni(1)–O(2)         | 2.0646(14) | Ni(1)-O(2)A       | 2.0646(14) |
| Ni(1)–O(1W)        | 2.0938(13) | Ni(1)-O(1W)A      | 2.0938(13) |
| O(2)-Ni(1)-O(2)A   | 180.0      | O(2)-Ni(1)-N(1)   | 90.42(6)   |
| O(2)-Ni(1)-O(1W)A  | 90.54(6)   | O(2)A-Ni(1)-N(1)  | 89.58(6)   |
| O(2)A-Ni(1)-O(1W)A | 89.46(5)   | O(1W)A–Ni(1)–N(1) | 91.24(6)   |
| O(2)-Ni(1)-O(1W)   | 89.46(6)   | O(1W)-Ni(1)-N(1)  | 88.76(6)   |
| O(2)A-Ni(1)-O(1W)  | 90.54(6)   | O(2)-Ni(1)-N(1)A  | 89.58(6)   |
| O(1W)A-Ni(1)-O(1W) | 180.0      | O(2)A-Ni(1)-N(1)A | 90.42(6)   |
| O(1W)A-Ni(1)-N(1)A | 88.76(6)   | N(1)-Ni(1)-N(1)A  | 180.0      |
| O(1W)-Ni(1)-N(1)A  | 91.24(6)   |                   |            |

Table S1 Selected bond distances  $(\text{\AA})$  and angles (deg) for complex 1.

Symmetry codes: A: -x + 1, -y, -z + 1; B: -x, -y - 1, -z

Table S2 Selected bond distances (Å) and angles (deg) for complex 2.

|                    |            |                    | -          |
|--------------------|------------|--------------------|------------|
|                    | 2          | 2                  |            |
| Ni(1)–N(1)         | 2.108(2)   | Ni(1)–N(1)A        | 2.108(2)   |
| Ni(1)–O(2)         | 2.0187(15) | Ni(1)–O(2)A        | 2.0187(15) |
| Ni(1)-O(1W)        | 2.0899(16) | Ni(1)-O(1W)A       | 2.0899(16) |
| O(2)-Ni(1)-O(2)A   | 180.0      | O(2)-Ni(1)-N(1)A   | 88.78(7)   |
| O(2)–Ni(1)–O(1W)   | 87.85(7)   | O(2)A-Ni(1)-N(1)A  | 91.23(7)   |
| O(2)A-Ni(1)-O(1W)  | 92.14(7)   | O(1W)-Ni(1)-N(1)A  | 91.13(8)   |
| O(2)-Ni(1)-O(1W)A  | 92.15(7)   | O(1W)A-Ni(1)-N(1)A | 88.87(8)   |
| O(2)A-Ni(1)-O(1W)A | 87.86(7)   | O(2)-Ni(1)-N(1)    | 91.22(7)   |
| O(1W)-Ni(1)-O(1W)A | 180.0      | O(2)A-Ni(1)-N(1)   | 88.78(7)   |
| O(1W)-Ni(1)-N(1)   | 88.87(8)   | N(1)A-Ni(1)-N(1)   | 180.0      |
| O(1W)A-Ni(1)-N(1)  | 91.13(8)   |                    |            |

Symmetry codes: A -x, -y, -z; B -x + 1, -y, -z + 2

| Table S3 Selected bond | distances (Å) and | angles (deg) for | complex 3. |
|------------------------|-------------------|------------------|------------|

|                   |            | 3                 |            |
|-------------------|------------|-------------------|------------|
| Ni(1)–N(1)        | 2.1235(16) | Ni(1)–N(1)A       | 2.1235(16) |
| Ni(1)–O(3)        | 2.0673(13) | Ni(1)-O(3)A       | 2.0674(13) |
| Ni(1)–N(4)B       | 2.1448(16) | Ni(1)–N(4)C       | 2.1448(16) |
| O(3)-Ni(1)-O(3)A  | 180.0      | N(1)-Ni(1)-N(4)B  | 84.98(6)   |
| O(3)–Ni(1)–N(1)   | 86.53(6)   | N(1)A-Ni(1)-N(4)B | 95.02(6)   |
| O(3)A-Ni(1)-N(1)  | 93.47(6)   | O(3)-Ni(1)-N(4)C  | 86.28(6)   |
| O(3)–Ni(1)–N(1)A  | 93.47(6)   | O(3)A-Ni(1)-N(4)C | 93.72(6)   |
| O(3)A-Ni(1)-N(1)A | 86.53(6)   | N(1)-Ni(1)-N(4)C  | 95.02(6)   |
| N(1)-Ni(1)-N(1)A  | 180.0      | N(1)A-Ni(1)-N(4)C | 84.98(6)   |
| O(3)-Ni(1)-N(4)B  | 93.72(6)   | N(4)B-Ni(1)-N(4)C | 180.00(10) |
| O(3)A-Ni(1)-N(4)B | 86.28(6)   |                   |            |

Symmetry codes: A -x + 2, -y, -z; B x + 1, -y + 1/2, z - 1/2; C -x + 1, y - 1/2, -z + 1/2

Table S4 Selected bond distances (Å) and angles (deg) for complex 4.

|                   |            | 4                 |            |
|-------------------|------------|-------------------|------------|
| Ni(1)–N(1)        | 2.1330(18) | Ni(1)–N(1)A       | 2.1330(18) |
| Ni(1)–O(3)        | 2.0750(14) | Ni(1)–O(3)A       | 2.0750(14) |
| Ni(1)–N(4)B       | 2.1382(18) | Ni(1)–N(4)C       | 2.1382(18) |
| O(3)-Ni(1)-O(3)A  | 180.0      | N(1)A-Ni(1)-N(4)B | 93.46(7)   |
| O(3)-Ni(1)-N(1)A  | 94.89(6)   | N(1)-Ni(1)-N(4)B  | 86.54(7)   |
| O(3)A-Ni(1)-N(1)A | 85.11(6)   | O(3)–Ni(1)–N(4)C  | 88.02(6)   |
| O(3)-Ni(1)-N(1)   | 85.11(6)   | O(3)A-Ni(1)-N(4)C | 91.98(6)   |
| O(3)A-Ni(1)-N(1)  | 94.89(6)   | N(1)A-Ni(1)-N(4)C | 86.54(7)   |
| N(1)A-Ni(1)-N(1)  | 180.0      | N(1)-Ni(1)-N(4)C  | 93.46(7)   |
| O(3)-Ni(1)-N(4)B  | 91.98(6)   | N(4)B-Ni(1)-N(4)C | 180.0      |
| O(3)A-Ni(1)-N(4)B | 88.02(6)   |                   |            |

Symmetry codes: A -x, -y, -z + 3; B x + 1, -y + 1/2, z + 3/2; C -x - 1, y - 1/2, -z + 3/2

|                   |            |                   | -          |
|-------------------|------------|-------------------|------------|
|                   |            | 5                 |            |
| Ni(1)–N(1)        | 2.100(4)   | Ni(1)–N(4)B       | 2.113(4)   |
| Ni(1)-O(3)        | 2.062(3)   | Ni(1)–O(5)        | 2.058(3)   |
| Ni(1)-O(1W)       | 2.089(3)   | Ni(1)-O(6)A       | 2.073(3)   |
| O(5)-Ni(1)-O(3)   | 101.45(11) | O(6)A-Ni(1)-N(1)  | 90.73(13)  |
| O(5)-Ni(1)-O(6)A  | 77.78(11)  | O(1W)-Ni(1)-N(1)  | 91.75(13)  |
| O(3)-Ni(1)-O(6)A  | 178.28(12) | O(5)-Ni(1)-N(4)B  | 91.35(13)  |
| O(5)-Ni(1)-O(1W)  | 170.92(11) | O(3)-Ni(1)-N(4)B  | 90.74(12)  |
| O(3)-Ni(1)-O(1W)  | 87.51(11)  | O(6)A-Ni(1)-N(4)B | 90.81(12)  |
| O(6)A-Ni(1)-O(1W) | 93.32(11)  | O(1W)-Ni(1)-N(4)B | 87.00(13)  |
| O(5)-Ni(1)-N(1)   | 90.11(13)  | N(1)-Ni(1)-N(4)B  | 178.07(14) |
| O(3)-Ni(1)-N(1)   | 87.73(13)  |                   |            |

Table S5 Selected bond distances (Å) and angles (deg) for complex 5.

Symmetry codes: A -x + 1, y + 1/2, -z + 3/2; B x + 1, -y + 3/2, z + 1/2

|                    |           |                    | -          |
|--------------------|-----------|--------------------|------------|
|                    |           | 6                  |            |
| Ni(1)–N(1)         | 2.192(3)  | Ni(1)–N(1)A        | 2.192(3)   |
| Ni(1)–O(3)         | 2.018(3)  | Ni(1)–O(3)A        | 2.018(3)   |
| Ni(1)–O(1W)        | 2.059(3)  | Ni(1)-O(1W)A       | 2.059(3)   |
| Ni(2)–O(2W)        | 2.082(2)  | Ni(2)–O(2W)B       | 2.082(2)   |
| Ni(2)–O(5)         | 2.094(3)  | Ni(2)–O(5)B        | 2.094(3)   |
| Ni(2)–N(4)C        | 2.085(3)  | Ni(2)–N(4)D        | 2.085(3)   |
| O(3)-Ni(1)-O(3)A   | 180.0     | O(3)-Ni(1)-N(1)    | 87.93(12)  |
| O(3)-Ni(1)-O(1W)A  | 90.93(11) | O(3)A-Ni(1)-N(1)   | 92.07(12)  |
| O(3)A-Ni(1)-O(1W)A | 89.07(11) | O(1W)A-Ni(1)-N(1)  | 91.00(12)  |
| O(3)–Ni(1)–O(1W)   | 89.07(11) | O(1W)-Ni(1)-N(1)   | 89.00(12)  |
| O(3)A-Ni(1)-O(1W)  | 90.93(11) | N(1)A-Ni(1)-N(1)   | 180.00(17) |
| O(1W)A-Ni(1)-O(1W) | 180.0     | O(2W)-Ni(2)-O(2W)B | 180.0      |
| O(3)-Ni(1)-N(1)A   | 92.07(12) | O(2W)-Ni(2)-N(4)C  | 85.67(12)  |
| O(3)A-Ni(1)-N(1)A  | 87.93(12) | O(2W)B-Ni(2)-N(4)C | 94.33(12)  |
| O(1W)A-Ni(1)-N(1)A | 89.00(12) | O(2W)-Ni(2)-N(4)D  | 94.33(12)  |
| O(1W)-Ni(1)-N(1)A  | 91.00(12) | O(2W)B-Ni(2)-N(4)D | 85.67(12)  |
| N(4)C-Ni(2)-N(4)D  | 180.0     | O(2W)B-Ni(2)-O(5)B | 88.29(10)  |
| O(2W)-Ni(2)-O(5)   | 88.29(10) | N(4)C-Ni(2)-O(5)B  | 91.38(12)  |
| O(2W)B-Ni(2)-O(5)  | 91.71(10) | N(4)D-Ni(2)-O(5)B  | 88.62(12)  |
| N(4)C-Ni(2)-O(5)   | 88.62(12) | O(5)–Ni(2)–O(5)B   | 180.0      |
| N(4)D-Ni(2)-O(5)   | 91.38(12) | O(2W)-Ni(2)-O(5)B  | 91.71(10)  |

 Table S6 Selected bond distances (Å) and angles (deg) for complex 6.

Symmetry codes: A -*x* + 1, -*y* + 1, -*z* + 1; B -*x*, -*y*, -*z* + 2; C -*x* + 1, -*y* + 2, -*z* + 2; D *x* - 1, *y* - 2, *z* 

| Table S7 Selected bond | distances (Å) and ang | les (deg) for complex 7. |
|------------------------|-----------------------|--------------------------|
|                        |                       | (                        |

|                   |           | 7                 |          |
|-------------------|-----------|-------------------|----------|
| Ni(1)–N(1)        | 2.139(6)  | Ni(1)–N(4)B       | 2.112(6) |
| Ni(1)–O(3)        | 2.090(4)  | Ni(1)-O(6)A       | 2.054(4) |
| Ni(1)-O(1W)       | 2.072(4)  | Ni(1)-O(2W)       | 2.051(5) |
| O(6)A-Ni(1)-O(2W) | 91.87(18) | O(6)A-Ni(1)-N(4)B | 88.4(2)  |
| O(6)A-Ni(1)-O(1W) | 88.57(18) | O(2W)-Ni(1)-N(4)B | 87.8(2)  |
| O(2W)-Ni(1)-O(1W) | 179.0(2)  | O(1W)-Ni(1)-N(4)B | 91.3(2)  |
| O(6)A-Ni(1)-O(3)  | 178.3(2)  | O(3)-Ni(1)-N(4)B  | 93.2(2)  |
| O(2W)-Ni(1)-O(3)  | 87.61(19) | O(6)A-Ni(1)-N(1)  | 89.3(2)  |
| O(1W)-Ni(1)-O(3)  | 91.97(19) | O(2W)-Ni(1)-N(1)  | 92.1(2)  |
| O(3)–Ni(1)–N(1)   | 89.1(2)   | O(1W)-Ni(1)-N(1)  | 88.8(2)  |
| N(4)B-Ni(1)-N(1)  | 177.6(3)  |                   |          |

Symmetry codes: A x, -y + 2, z - 1/2; B x - 1/2, y + 1/2, z + 1

Table S8 Selected bond distances (Å) and angles (deg) for complex 8.

| 8                |            |                   |            |  |
|------------------|------------|-------------------|------------|--|
| Ni(1)–N(2)       | 2.041(3)   | Ni(1)–O(1)        | 2.047(3)   |  |
| Ni(1)–N(1)       | 2.055(3)   | Ni(1)-O(4)A       | 2.067(3)   |  |
| Ni(1)-O(3)A      | 2.146(3)   | Ni(1)–O(2)        | 2.186(3)   |  |
| N(2)-Ni(1)-O(1)  | 96.85(12)  | N(2)-Ni(1)-N(1)   | 97.95(12)  |  |
| O(1)-Ni(1)-N(1)  | 94.63(12)  | N(2)-Ni(1)-O(4)A  | 99.62(12)  |  |
| O(1)-Ni(1)-O(4)A | 155.36(11) | N(1)-Ni(1)-O(4)A  | 101.06(12) |  |
| N(2)-Ni(1)-O(3)A | 88.67(11)  | O(1)-Ni(1)-O(3)A  | 99.82(11)  |  |
| N(1)-Ni(1)-O(3)A | 163.29(12) | O(4)A-Ni(1)-O(3)A | 62.57(10)  |  |
| N(2)-Ni(1)-O(2)  | 157.46(12) | O(1)-Ni(1)-O(2)   | 62.26(10)  |  |
| N(1)-Ni(1)-O(2)  | 92.47(12)  | O(4)A-Ni(1)-O(2)  | 97.90(11)  |  |
| O(3)A-Ni(1)-O(2) | 86.91(10)  |                   |            |  |

Symmetry code: A: x, y+1, z

|                   |           | 9                 |           |
|-------------------|-----------|-------------------|-----------|
| Ni(1)–N(1)        | 2.114(4)  | Ni(1)–N(1)A       | 2.114(4)  |
| Ni(1)–O(2)        | 2.028(3)  | Ni(1)-O(2)A       | 2.028(3)  |
| Ni(1)–O(1)        | 2.073(3)  | Ni(1)-O(1)A       | 2.073(3)  |
| O(2)A-Ni(1)-O(2)  | 180.0     | O(2)A-Ni(1)-O(1)  | 88.59(12) |
| O(2)-Ni(1)-O(1)   | 91.41(12) | O(2)A-Ni(1)-O(1)A | 91.41(12) |
| O(2)-Ni(1)-O(1)A  | 88.59(12) | O(1)-Ni(1)-O(1)A  | 180.0     |
| O(1)-Ni(1)-N(1)   | 89.07(14) | O(1)A-Ni(1)-N(1)  | 90.93(14) |
| O(2)A-Ni(1)-N(1)A | 89.49(13) | O(2)-Ni(1)-N(1)A  | 90.51(13) |
| O(1)-Ni(1)-N(1)A  | 90.93(14) | O(1)A-Ni(1)-N(1)A | 89.07(14) |
| O(2)A-Ni(1)-N(1)  | 90.51(13) | O(2)-Ni(1)-N(1)   | 89.49(13) |
| N(1)A-Ni(1)-N(1)  | 180.0     |                   |           |

Table S9 Selected bond distances  $(\text{\AA})$  and angles (deg) for complex 9.

Symmetry code: A: -x, -y, -z

Table S10 Selected bond distances (Å) and angles (deg) for complex 10.

| 10                 |            |                    |            |  |
|--------------------|------------|--------------------|------------|--|
| Ni(1)-O(1W)A       | 2.0657(13) | Ni(1)–O(1W)        | 2.0657(13) |  |
| Ni(1)-O(1)A        | 2.1020(11) | Ni(1)-O(1)         | 2.1020(11) |  |
| Ni(1)–N(1)         | 2.1065(14) | Ni(1)–N(1)A        | 2.1065(14) |  |
| O(1W)A–Ni(1)–O(1W) | 180.0      | O(1W)A-Ni(1)-O(1)A | 88.26(5)   |  |
| O(1W)-Ni(1)-O(1)A  | 91.74(5)   | O(1W)A–Ni(1)–O(1)  | 91.74(5)   |  |
| O(1W)–Ni(1)–O(1)   | 88.26(5)   | O(1)A-Ni(1)-O(1)   | 180.0      |  |
| O(1W)A-Ni(1)-N(1)  | 87.85(6)   | O(1W)-Ni(1)-N(1)   | 92.14(6)   |  |
| O(1)A-Ni(1)-N(1)   | 91.18(5)   | O(1)-Ni(1)-N(1)    | 88.82(5)   |  |
| O(1W)A-Ni(1)-N(1)A | 92.15(6)   | O(1W)-Ni(1)-N(1)A  | 87.85(6)   |  |
| O(1)A-Ni(1)-N(1)A  | 88.82(5)   | O(1)-Ni(1)-N(1)A   | 91.18(5)   |  |
| N(1)-Ni(1)-N(1)A   | 180.0      |                    |            |  |

Symmetry code: A: -x, -y, -z



Fig. S1 (a) The coordination environment of Ni(II) ion in 2; (b) 1D chain extended by L.



Fig. S2 (a) The coordination environment of Ni(II) ion in 4; (b) The 2D network.



Fig. S3 (a) The coordination environment of Ni(II) ion in 10; (b) The 2D network.







Fig. S5 The PXRD patterns of complexes 1-10.



Fig. S6 Luminescence spectra of  $M^{n+}@1-10$ , the Luminescent quenching rates of 1–10 induced by Fe<sup>3+</sup> and the emission spectra of Fe<sup>3+</sup>@1, 5, 7 aqueous suspensions with the concentration of Fe<sup>3+</sup>.



Fig. S7 Fluorescence spectra of BSA with different concentrations of complex 1 (a) and 5 (b).



**Fig. S8** Cyclic voltammograms of 1-, 3-, 7-, 9-CPE in 0.1 M H<sub>2</sub>SO<sub>4</sub> + 0.5 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution at different scan rates. Scan rates from 20 to 400 mVs<sup>-1</sup>.

| Complexes | $H_2O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BrO <sub>3</sub> -                                                           | NO <sub>2</sub> -                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-CPE<br>100<br>1-CPE<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 |                                                                                 |
| 3         | $\begin{bmatrix} 20 \\ 0 \\ 0 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -20 \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                              | 3-CPE<br>0 NO7<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 5         | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ••                                                                           | ••                                                                              |
| 7         | $\begin{array}{c} 10 \\ \mathbf{T} \\ \mathbf{T}$ |                                                                              |                                                                                 |
| 9         | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | 9-CPE<br>NO2<br>                                                                |

Fig. S9 The different electrochemical activities.



Chart S1 The structural details of complexes 1–5. (a) The carboxylic acids; (b) The coordination modes of Ni(II); (c) The subunits of Ni-carboxylates; (d) The subunits of Ni-L; (e) The schematic view of the structures.



**Chart S2** The structural details of complexes **6–10**. (a) The carboxylic acids; (b) The coordination modes of Ni(II); (c) The subunits of Ni-carboxylates; (d) The subunits of Ni-L; (e) The schematic view of the structures.

| Complexes | $H_2O_2$ | BrO <sub>3</sub> -         | NO <sub>2</sub> - |
|-----------|----------|----------------------------|-------------------|
| 1         |          |                            |                   |
| 3         |          |                            |                   |
| 5         |          |                            |                   |
| 7         |          |                            |                   |
| 9         |          | 2017-2015/002010-0020-0020 |                   |

Chart S3 The different electrochemical activities.