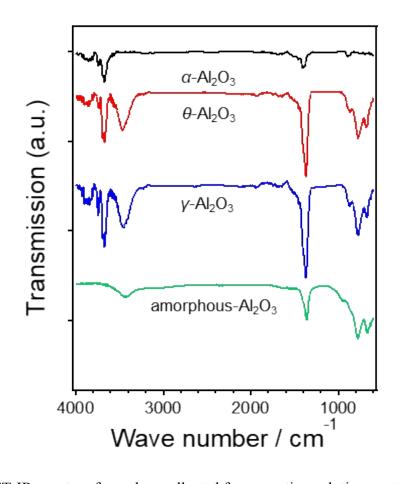
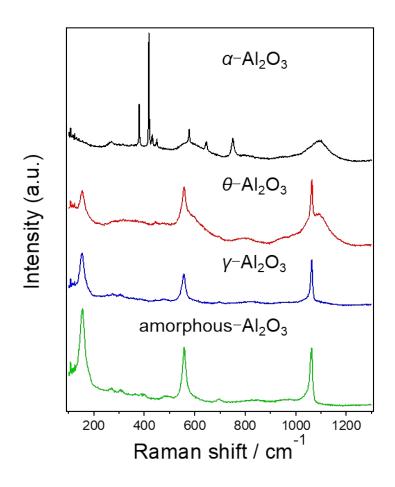
Supporting Information

Hierarchical Spheres of Mg-Al LDH for Removal of Phosphate Ions: Effect of Alumina Polymorph as Precursor

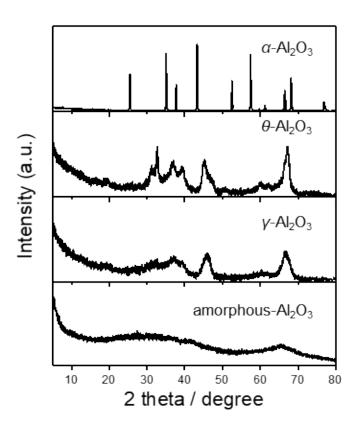
Tomohito Sudare,^a Atsushi Zenzai,^b Shuhei Tamura,^b Masahiro Kiyama,^b Fumitaka

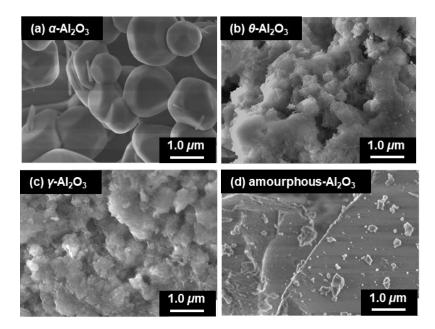

Hayashi,^b and Katsuya Teshima^{a,b}[†]

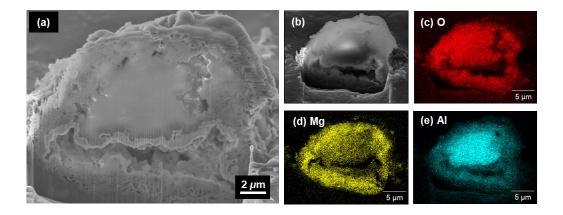
[†]Research Initiative for Supra-Materials, Shinshu University, Japan Nagano 380-8553, Japan

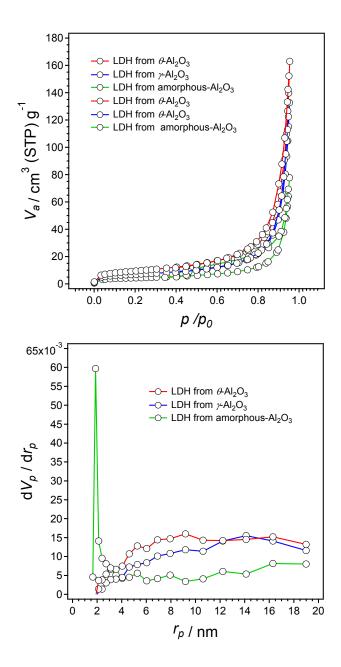

§Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-

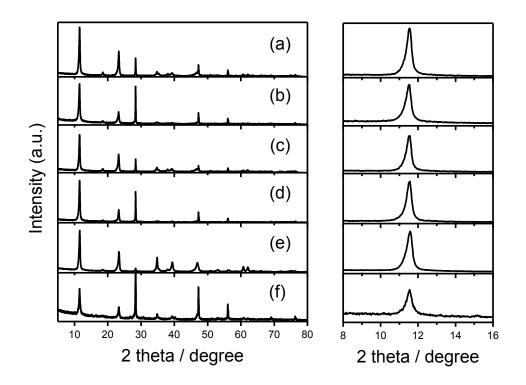
1 Wakasato, Nagano 380-8553, Japan

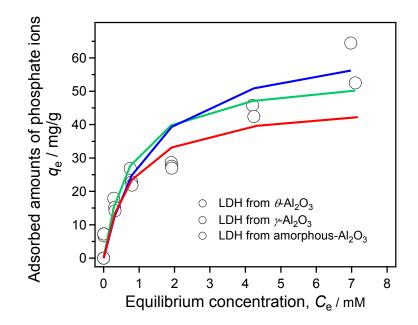

*E-mail: teshima@shinshu-u.ac.jp


Figure S1. FT-IR spectra of powders collected from reaction solution containing Al_2O_3 precursor and MgO after 120 h (α -Al_2O_3, θ -Al_2O_3, γ -Al_2O_3, and amorphous Al_2O_3 were used as precursors).


Figure S2. Raman spectra of powders collected from reaction solution containing Al_2O_3 precursor and MgO after 120 h (α -Al_2O_3, θ -Al_2O_3, γ -Al_2O_3, and amorphous Al_2O_3 were used as precursors).


Figure S3. XRD patterns of (a) α -Al₂O₃, (b) θ -Al₂O₃, (c) γ -Al₂O₃, and (d) amorphous-Al₂O₃ used as precursors.


Figure S4. SEM images of (a) α -Al₂O₃, (b) θ -Al₂O₃, (c) γ -Al₂O₃, and (d) amorphous-Al₂O₃ used as precursors.


Figure S5. (a) Cross-sectional SEM images and (b-e) elemental maps of LDH particles prepared using γ -Al₂O₃.

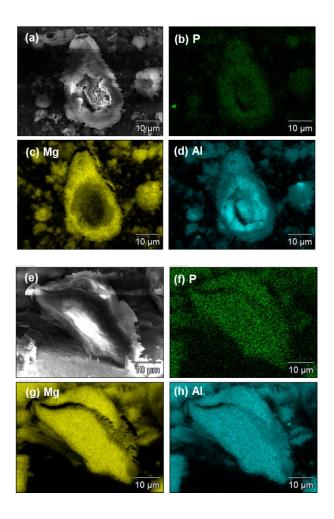

Figure S6. (top) N₂ adsorption/desorption isotherms and (bottom) pore-size distribution of powders collected from reaction solution containing Al₂O₃ precursor and MgO after 120 h (θ -Al₂O₃, γ -Al₂O₃, and amorphous Al₂O₃ were used as precursors).

Figure S7. XRD patterns of LDH powders (a, c, e) before and (b, d, f) after replacement of interlayer anionic species in LDH particles with Cl⁻ ions (PDF 0511525, and PDF 08301141 were obtained from ICDD database); (a, b) θ -Al₂O₃, (c, d) γ -Al₂O₃, and (e, f) amorphous-Al₂O₃ were used as precursors.

Figure S8. Adsorption isotherms for phosphate ions with respect to LDH prepared using θ -Al₂O₃, γ -Al₂O₃, and amorphous-Al₂O₃ were used as precursors after replacement of interlayer anionic species in LDH particles with Cl⁻ ions. The value of the Langmuir constant, b_L (1.25, 0.74, and 1.32 mM), and the maximum amount of adsorbate, phosphate ions here, corresponding to the Langmuir model, q_L (64.95, 67.11, and 55.56 mg g⁻¹), sums of the mean squared errors for the Langmuir model, R^2 (0.95, 0.86, and 0.96) with respects to LDH prepared from θ -Al₂O₃, γ -Al₂O₃, amorphous-Al₂O₃, respectively.

Figure S9. (a, e) Cross-sectional SEM images and (b-d, f-h) elemental maps of LDH particles prepared from (a-e) θ -Al₂O₃ and (f-j) γ -Al₂O₃. Images and maps were obtained after HPO₄²⁻ ion adsorption test.