Synthesis, coordination chemistry and photophysical properties of naphtho-fused pyrazole ligands

Supporting Information

Rohan J. Weekes^a and Chris S. Hawes^{*a}

^aSchool of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, U.K.

Email: c.s.hawes@keele.ac.uk

Contents:

1.	Spectroscopic Data	2
2.	X-ray Powder Diffraction Patterns	8
3.	NMR Spectra	11

Figure S1 Absorption, emission ($\lambda_{ex} = 245 \text{ nm}$) and excitation ($\lambda_{em} = 345 \text{ nm}$) for HL1 in MeCN (17 μ M).

Figure S2 Absorption, emission ($\lambda_{ex} = 245 \text{ nm}$) and excitation ($\lambda_{em} = 345 \text{ nm}$) for **HL1** in hexane (35 μ M).

Figure S3 Absorption, emission ($\lambda_{ex} = 320 \text{ nm}$) and excitation ($\lambda_{em} = 373 \text{ nm}$) for L2 in MeCN (30 μ M).

Figure S4 Absorption, emission ($\lambda_{ex} = 320 \text{ nm}$) and excitation ($\lambda_{em} = 373 \text{ nm}$) for L2 in hexane (15 μ M).

Figure S5 Absorption spectra for **HL1** following sequential additions of $Cu(NO_3)_2 \cdot 2.5H_2O$ at 23 µM concentration in acetonitrile, up to a maximum of 1.4 equivalents.

Figure S6 Emission spectra ($\lambda_{ex} = 245 \text{ nm}$) for **HL1** following sequential additions of Cu(NO₃)₂·2.5H₂O at 23 µM concentration in acetonitrile, up to a maximum of 1.4 equivalents.

Figure S7 Absorption spectra for HL1 following sequential additions of $ZnCl_2$ at 23 μ M concentration in acetonitrile up to a maximum of 1.6 equivalents.

Figure S8 Emission spectra ($\lambda_{ex} = 245 \text{ nm}$) for **HL1** following sequential additions of ZnCl₂ at 23 μ M concentration in acetonitrile up to a maximum of 1.6 equivalents.

Figure S9 Emission spectra ($\lambda_{ex} = 320 \text{ nm}$) for **L2** at 30µM following sequential additions of Cu(NO₃)₂·2.5H₂O up to a maximum of 1.4 equivalents.

Figure S10 Emission spectra ($\lambda_{ex} = 320 \text{ nm}$) for **L2** at 30µM following sequential additions of ZnCl₂ up to a maximum of 12 equivalents.

Figure S11 Overlaid emission spectra for **HL1** in solution (MeCN 17 μ M, $\lambda_{ex} = 245$ nm, black), solid **HL1** (blue, $\lambda_{ex} = 300$ nm), and solid complex **2** (red, $\lambda_{ex} = 320$ nm)

Figure S12 Overlaid emission spectra for **L2** in solution (MeCN 30 μ M, $\lambda_{ex} = 320$ nm, black), solid **L2** (red, $\lambda_{ex} = 300$ nm), and solid complex **4** (red, $\lambda_{ex} = 320$ nm)

Figure S13 X-ray powder diffraction pattern for **HL1**, showing measured data (black, room temperature) and pattern simulated from single crystal data at 150 K (red)

Figure S14 X-ray powder diffraction pattern for **L2**, showing measured data (black, room temperature) and pattern simulated from single crystal data at 150 K (red)

Figure S15 X-ray powder diffraction pattern for complex **1**, showing measured data (black, room temperature) and pattern simulated from single crystal data at 150 K (red)

Figure S16 X-ray powder diffraction pattern for complex **2**, showing measured data (black, room temperature) and pattern simulated from single crystal data at 150 K (red)

Figure S17 X-ray powder diffraction pattern for complex **3**, showing measured data (black, room temperature) and pattern simulated from single crystal data at 150 K (red)

Figure S18 X-ray powder diffraction pattern for complex **3**, showing measured data (black, room temperature) and pattern simulated from single crystal data at 150 K (red)

Figure S19 ¹H NMR spectrum for HL1 (d_6 -DMSO, 400 MHz), with proton numbering scheme

Figure S20¹³C NMR spectrum for HL1 (d₆-DMSO, 100 MHz)

Figure S21 ¹H NMR spectrum for L2 (CDCl₃, 400 MHz) with proton numbering scheme

Figure S22 ¹³C NMR spectrum for L2 (CDCl₃, 100 MHz)