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Fig. S1 PXRD patterns of Cd-MOF simulated from the X-ray single-crystal data and 

as-synthesized products.

Fig. S2 TG and DSC curves for Cd-MOF.



Fig. S3 XPS spectra of Cd-MOF: (a) survey; (b) C 1s; (c) N 1s and (d) Cd 3d

Fig. S3b shows the high-resolution XPS spectrum of C 1s, which can be 

deconvoluted into four peaks on the basis of their binding energies, 

corresponding to C=C (284.9 eV), C=N (285.8 eV), C-O (286.8 eV) and C=O 

(289 eV). In the high-resolution spectrum of Fig. S3c, the N 1s spectrum can be 

separated into two main peaks. The binding energy at 398.5 eV is attributed to 

pyridinic-N, whereas the binding energies of 404 eV are assigned to the 

interaction between Cd and N. The XPS spectrum of O 1s displayed in Fig. 5a 

shows the peaks at 530.5 eV, 531.3 eV, 532.2 eV, 533 eV and 533.9 eV, 

indicating the existence of Cd-O bonds, hydroxyl oxygen, carbon-oxygen 



double bond, carbon-oxygen single bond and physi- or chemi-sorbed 

water/oxygen, respectively. It is observed from Fig. S3d, the two peaks at the 

binding energy levels of 406.1 eV and 412.9 eV, corresponding to Cd 3d5/2 and Cd 

3d3/2, respectively. There is spin orbit separation of about 6.8 eV between Cd 3d5/2 

and Cd 3d3/2 states, which agrees well with previous reported.

Fig. S4 SEM images of Cd-MOF.



Fig. S5 Luminescence intensity of Cd-MOF at 461 nm dispersed in water with the 

addition of different mixed ions (0.01 M) (m1: Cd2+/Pb2+; m2: Ca2+/Zn2+/Ni2+; m3: 

Co2+ /Hg2+/Mn2+ /Ni2+).



Fig. S6 UV-vis adsorption spectra of M (NO3)n aqueous solutions and the excitation 

spectrum of Cd-MOF.

Fig. S7 The color images before and after adding Cd-MOF into Cu(NO3)2 aqueous 

solutions. 



Fig. S8 XPS survey for Cu2+ treatment of Cd-MOF.

Fig. S9 The luminescence quenching efficiencies of nitro-compounds with the same 

concentration (0.1 mM).



Fig. S10 UV-vis adsorption spectra of NB and H3cpnc in DMA solution, and the 

excitation spectrum of Cd-MOF.

Fig. S11 Luminescent intensity at 461 nm of Cd-MOF after five recycles in (a) Cu2+ 

and (b) NB solutions (10-2 M)



Fig. S12 PXRD patterns of Cd-MOF treated by the Cu2+ ion aqueous solution and 

NB after five runs

Fig. S13 The gravimetric capacitance for Cd-MOF electrode at various current 

densities.



Table S1 Comparison of supercapacitive performance of our sample with other 

previously reported MOF-based electrode materials.

MOF-based 

materials

Specific 

capacitance

Current density

/Scan rate

Retention 

(%)
Electrolyte Reference

Cu@BTC 228 F g-1 1.5 A g-1 89 3 M KOH 35

[Ni(Hppza)2]n 184 F g-1 5 mV s-1 65 2 M KOH 36

Co-MOF 206.8 F g-1 0.6 A g-1 98 0.5 M LiOH 37

Ni-pPD 295 F g-1 2 A g-1 80 TEABF4/ACN 38

Cu-bipy-BTC 160 F g-1 0.005 mA g-1 93 0.1 M HClO4 39

Co-BPDC 179.2 F g-1 10 mV s-1 77 0.5 M LiOH 40

Cd-MOF 321 F g-1 0.5 A g-1 95.2 2 M KOH This Work


