Polymorphism to master the spin crossover mechanism in

[Fe(PM-PeA)₂(NCSe)₂]

Elodie TAILLEUR^a, Mathieu MARCHIVIE^a, Philippe NEGRIER^b, Dominique DENUX^a, Stéphane MASSIP^c, Denise MONDIEIG^b, Guillaume CHASTANET^a, Philippe GUIONNEAU^a

Figure 1: X-ray pattern recorded at room temperature (red circle), calculated diffractogram (black line) and the difference curve (blue line) of the polymorph-II of the molecular complex [Fe(PM-PeA)₂(NCSe)₂] in the HS state, with the Bragg positions in green......2 **Figure 2:** x_MT as function of temperature determined on polymorph-I (a) batch 1 (b) and batch 2 and (c) on polymorph-II. Rietveld refinement on PXRD pattern recorded at room temperature in the HS state for Figure 3: X-ray pattern recorded at room temperature showing the coexistence of the two polymorphs of the molecular complex [Fe(PM-PeA)₂(NCSe)₂], in the HS state, with characteristic Bragg peaks from each polymorph highlighted bv arrows. Figure 4: Characteristic Bragg peaks of (a) polymorph-I and (b) polymorph-II in the HS state, at room temperature. Differences between both polymorphs are highlighted by gray areas. Figure 5: X-ray pattern recorded at room temperature in a pressure cell environment (red circle), without pressure (top) with a pressure of 12.426 kbar (down), the calculated diffractograms (black line), the difference curve (blue line) and the Bragg positions (green) for the polymorph-II of the molecular complex [Fe(PM-PeA)₂(NCSe)₂]. PXRD patterns recorded with λ =0.4859 Å. Figure 6: Labelling of the atoms of the asymmetric unit of mP2₁/c (HS) phase of polymorph-I of [Fe(PM-PeA)₂(NCSe)₂]. For more clarity, H atoms have been removed but their labelling are identical to one of C atom they are bonded the to. Figure 7: Labelling of the atoms of the asymmetric unit of mP2₁/c (HS) phase of polymorph-II of [Fe(PM-PeA)₂(NCSe)₂]. For more clarity, H atoms have been removed but their labelling are identical to C atom they bonded the one of are to. Figure 8: (a)-(d) Temperature dependences of lattice parameters and (e) evolution in temperature of the volume of the unit-cell [Fe(PM-PeA)₂(NCSe)₂], of of polymorph-Table 1: Elementary analysis on the crystalline powder of both polymorphs of [Fe(PM-PeA)₂(NCSe)₂] complex.....2 Table 2: Strategy for the data collection to determine the crystal structure of polymorph-II of [Fe(PM-PeA)₂(NCSe)₂]complex, at room temperature......7 Table 3: Strategy for the data collection to determine the crystal structure of polymorph-II of

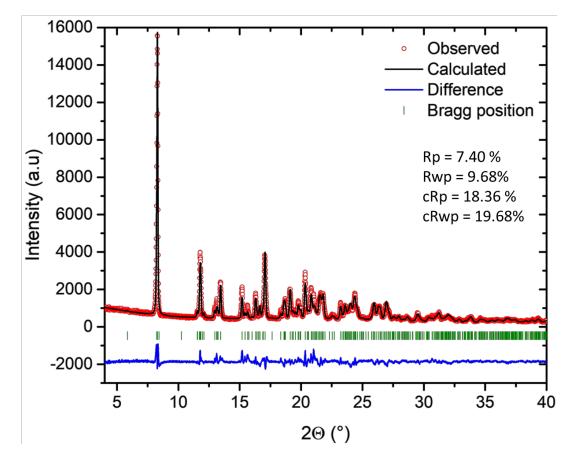


Figure 1: X-ray pattern recorded at room temperature (red circle), calculated diffractogram (black line) and the difference curve (blue line) of the polymorph-II of the molecular complex $[Fe(PM-PeA)_2(NCSe)_2]$ in the HS state, with the Bragg positions in green.

Table 1: Elementary a	analysis on the	e crystalline powde	er of both polymorpl	ns of [Fe(PM-Pe	A)2(NCSe)2] comp
% atomic	C	Н	Ν	Fe	Se
Calculated	60.74	3.40	10.12	6.73	19.02
Polymorph-I	59.60	3.69	9.82	6.58	16.59
Polymorph-II	57.85	3.24	9.86	6.37	15.38

Table 1: Elementary analysis on the crystalline powder of both polymorphs of [Fe(PM-PeA)2(NCSe)2] complex.

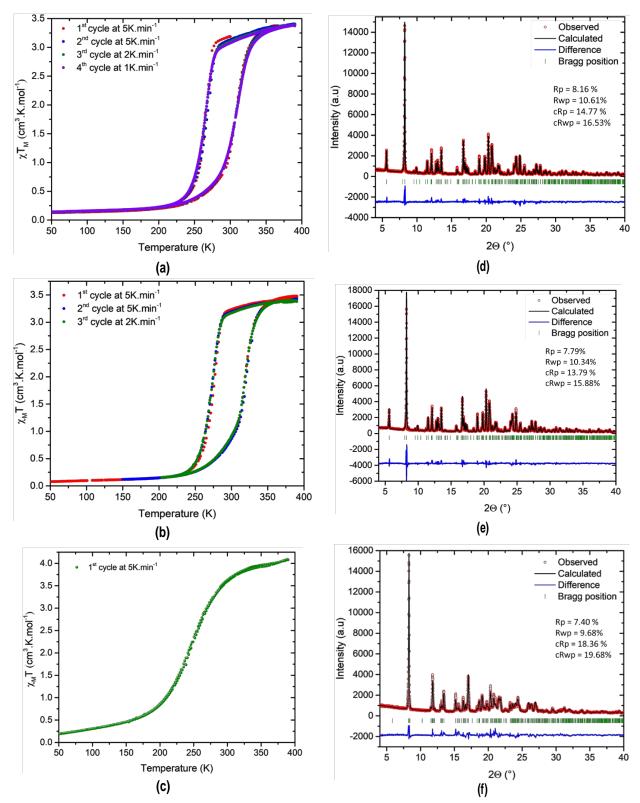


Figure 2: $\chi_M T$ as function of temperature determined on polymorph-I (a) batch 1 (b) and batch 2 and (c) on polymorph-II. Rietveld refinement on PXRD pattern recorded at room temperature in the HS state for polymorph-I (d) batch 1 (e) and batch 2 and (f) on polymorph-II.

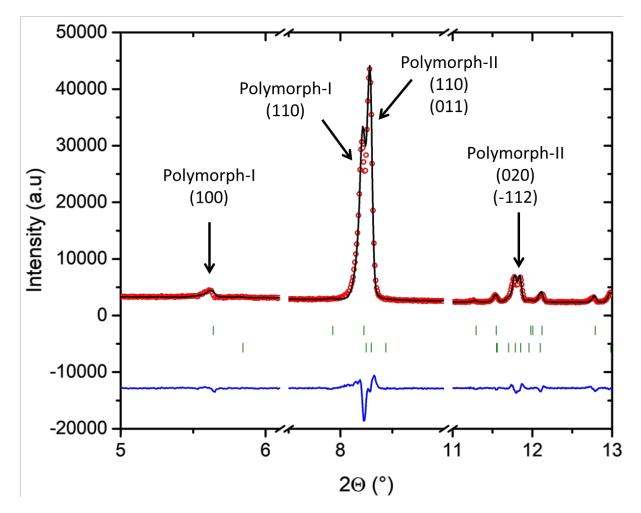


Figure 3: X-ray pattern recorded at room temperature showing the coexistence of the two polymorphs of the molecular complex [Fe(PM-PeA)₂(NCSe)₂], in the HS state, with characteristic Bragg peaks from each polymorph highlighted by arrows.

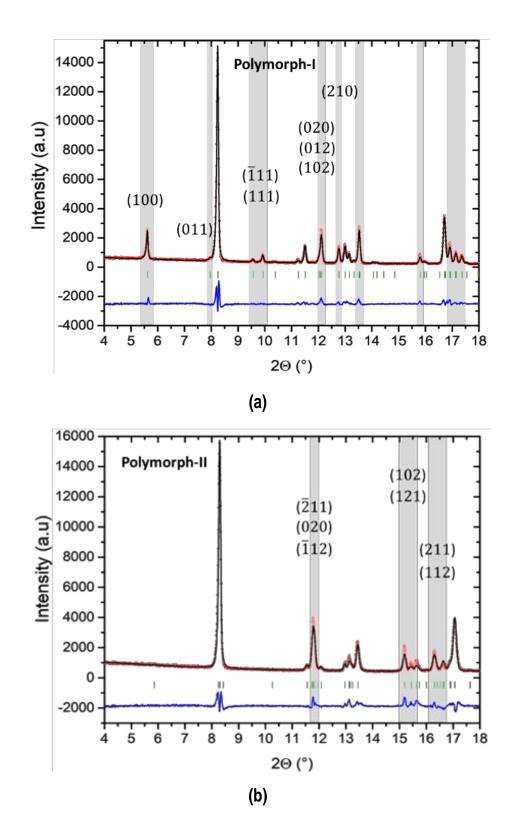


Figure 4: Characteristic Bragg peaks of (a) polymorph-I and (b) polymorph-II in the HS state, at room temperature. Differences between both polymorphs are highlighted by gray areas.

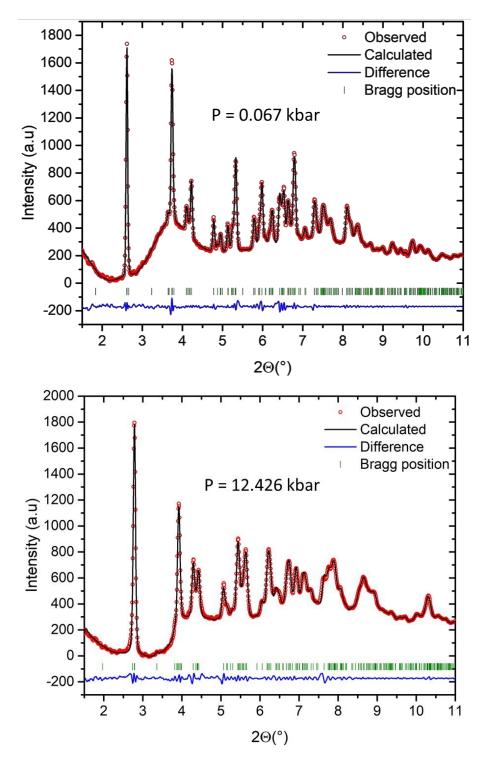


Figure 5: X-ray pattern recorded at room temperature in a pressure cell environment (red circle), without pressure (top) with a pressure of 12.426 kbar (down), the calculated diffractograms (black line), the difference curve (blue line) and the Bragg positions (green) for the polymorph-II of the molecular complex [Fe(PM-PeA)₂(NCSe)₂]. PXRD patterns recorded with λ =0.4859 Å.

Two complete collections of the diffracted intensities (293 K and 100 K) were carried out [1] on the same single-crystal, having a size of approximatively 10x10x50 µm3. The single-crystal was mounted on a polymer pen and positioned in the diffractometer, a Rigaku FRX microfocus with a copper rotating anode $(Cu-K\alpha, \lambda = 1.54184 \text{ Å})$ associated with a hybrid Dectris Pilatus 200 K detector. The strategies for data collection were calculated for a monoclinic P2/m system and are given in the table 2 and table 3, respectively.

CrysalisProsoftware [2] was used to perform the data reduction. The crystal structures were solved by the direct methods and the atomic parameters were refined by the least squares method using the SHELX [3] suite in the Olex2 environment [4].

complex, at room temperature.								
·	Dx (mm)	2θ (°)	ω (°)	φ (°)	χ (°)	t _{exp} (s)	°/image (°)	Lenght of ω scan (°)
1 st ω scan	45	-105	-195	144	24	25	1	180
$2^{nd} \omega scan$	45	5	-38	144	24	5	1	48
$3^{rd} \omega$ scan	45	-105	-164	-180	60	25	1	149
$4^{th} \omega scan$	45	-41	-131	-144	60	5	1	180
5 th ω scan	45	-105	-178	108	60	25	1	126
$6^{th} \omega$ scan	45	-105	-195	-36	48	25	1	149
$7^{th} \omega scan$	45	-41	-131	0	36	5	1	180
$8^{th} \omega scan$	45	-105	-164	-144	60	25	1	131
9 th ω scan	45	-105	-182	144	60	25	1	94
$10^{th} \omega scan$	45	-105	-194	-108	60	25	1	132
$11^{th} \omega scan$	45	-41	-124	0	60	5	1	54
$12^{th} \omega scan$	45	-105	-195	-36	60	25	1	80

Table 2: Strategy for the data collection to determine the crystal structure of polymorph-II of [Fe(PM-PeA)₂(NCSe)₂]

	Dx (mm)	20 (°)	ω (°)	φ (°)	χ (°)	t _{exp} (s)	°/image (°)	Lenght of ω scan (°)
1 st ω scan	45	-105	-195	-36	60	20	1	180
$2^{nd} \omega$ scan	45	5	-85	-108	48	5	1	48
3 rd ω scan	45	-105	-195	144	36	20	1	180
$4^{th} \omega scan$	45	-41	-131	-108	60	10	1	180
5 th ω scan	45	-105	-195	-108	60	20	1	180
6 th ω scan	45	-105	-194	72	48	20	1	179
$7^{th} \omega scan$	45	-41	-105	-72	48	10	1	153
8 th ω scan	45	-105	-184	-72	12	20	1	57
9 th ω scan	45	-41	-128	72	36	10	1	61
10 th ω scan	45	-105	-179	-144	60	20	1	45
$11^{th} \omega scan$	45	-105	-60	-108	12	20	1	45
12 th ω scan	45	-105	-190	0	60	20	1	45
13 th ω scan	45	-105	-158	-72	60	20	1	84
14 th ω scan	45	-105	-195	72	60	20	1	80

Table 3:Strategy for the data collection to determine the crystal structure of polymorph-II of [Fe(PM-PeA)₂(NCSe)₂] complex, at 100K.

References :

 $\label{eq:constal} \end{tabular} \end{tabular} SMExpert 2.1 (Rigaku, Jun 7 th 2013) Software, Version 5.6.2.0, Tokyo, Japan.$

[2] Oxford Diffraction/ Agilent Technologies UK Ltd, n.d.

[3] (a) G. M. Sheldrick, *Acta Crystallogr. Sect. A Found. Crystallogr.* **2008**, *64*, 112–122 (b) G. M. Sheldrick, *Acta Crystallogr. Sect. C Struct. Chem.* **2015**, *71*, 3–8.

[4] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* **2009**, *42*, 339–341.

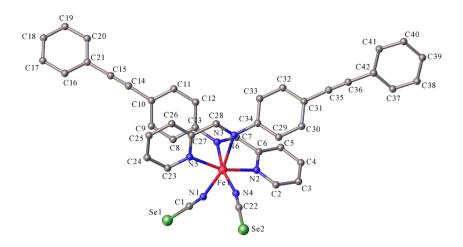


Figure 6: Labelling of the atoms of the asymmetric unit of $mP2_1/c$ (HS) phase of polymorph-I of [Fe(PM-PeA)₂(NCSe)₂]. For more clarity, Hatoms have been removed but their labelling are identical to the one of Catom they are bonded to.

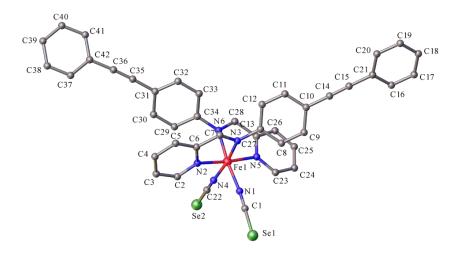


Figure 7: Labelling of the atoms of the asymmetric unit of $mP2_1/c$ (HS) phase of polymorph-II of [Fe(PM-PeA)₂(NCSe)₂]. For more clarity, H atoms have been removed but their labelling are identical to the one of C atom they are bonded to.

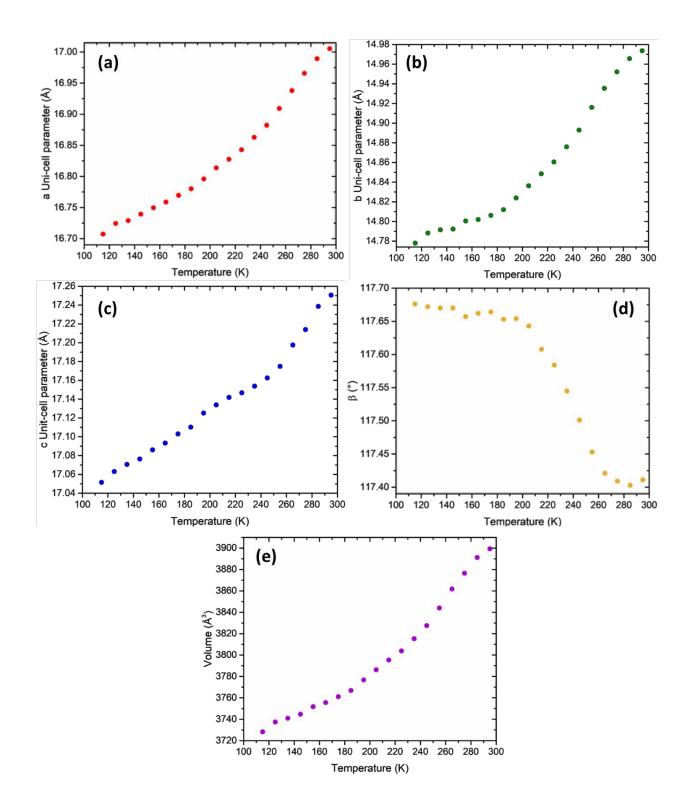


Figure 8: (a)-(d) Temperature dependences of lattice parameters and (e) evolution in temperature of the volume of the unit-cell of of [Fe(PM-PeA)₂(NCSe)₂], polymorph-II