Electronic Supplementary Information

The Energy Frameworks of Aufbau Synthon Modules in 4-Cyanopyridine Co-crystals.

Y. V. Torubaev, I. V. Skabitsky.

Table S1. Selected examples of intermolecular CN---I- R_f ¹bonding in the co-crystals (from the Cambridge Structural Database ²)

¹. R_f – perfluorinated aryl or alkyl group

²The Cambridge Structural Database C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, ActaCryst. (2016). B72, 171-179; DOI: 10.1107/S2052520616003954

CSD Identifier BULVAH C.B.Aakeroy, 1 C.L.Spartz, S.Dembowski, S.Dwyre, J.Desper, IUCrJ (2015), 2, 498 2 BUNJEB C.B.Aakeroy, C.L.Spartz, S.Dembowski, S.Dwyre, J.Desper, IUCrJ (2015), 2, 498 3 EZIBIA I.Nicolas, O.Jeannin, D.Pichon, M.Fourmigue, CrystEngComm (2016), **18**, 9325

Table S2.Selected examples of intermolecular CN---H- hydrogen bonded 4-cyanopyridine associates in binary cocrystals (from the Cambridge Structural Database [2])

Figure S1. Energy frameworks in **4CNpy**. **a) total energy**, **b) electrostatic c) dispersion**(15 kJ/mol cut-off). Note that total energy is the sum of the four energy components, **scaled** using the scale factors below:

Energy Model	k_ele	k_pol	k_disp	k_rep
B3LYP/6-31G(d,p) electron densities	1.057	0.740	0.871	0.618

Figure S2. Fragment of 4-CNpy crystal packing, showing paralel *zig-zag* energy frameworks at 10 kJ/mol) (**a**) and 12 kJ/mol (**b**) cut-off.

Figure S3 (for Table S3). Intermolecular interactions in 4CNpy.

 Table S3.Interaction Energies (kJ/mol) in 4CNpy.

N	N Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot
---	---------	---	------------------	-------	-------	-------	-------	-------

2	-X, -Y, -Z	6.47	B3LYP/6-31G(d,p)	-24.2	-4.4	-10.5	22.1	-24.3
			B3LYP/DGDZVP	-27.3	-4.5	-10.5	25.6	-25.5
4	x+1/2, -y, -z+1/2	7.21	B3LYP/6-31G(d,p)	-7.9	-1.2	-7.1	8.1	-10.5
			B3LYP/DGDZVP	-9.9	-1.4	-7.1	10.0	-11.6
2	-X, -Y, -Z	6.47	B3LYP/6-31G(d,p)	-7.1	-1.5	-6.9	2.8	-12.9
			B3LYP/DGDZVP	-8.1	-1.6	-6.9	4.7	-12.8
2	x, y, z	3.82	B3LYP/6-31G(d,p)	5.0	-0.7	-22.4	10.1	-8.5
			B3LYP/DGDZVP	0.6	-0.7	-22.4	18.4	-8.0

 Table S4.
 Intermolecular interaction energy (TONTO CE-B3LYP / DGDZVP)

Intermol. interaction energy, -kJ/mol	4CNpy	Co-crystal 1	Co-crystal 2	Co-crystal 3	Co-crystal 4
IN _{py} bonded	n/a	19.4	22.4	19.6	19.6
IN _{CN} bonded	n/a	n/a	n/a	12.3	11.6
[4CNpy] ₂ dimers	25.5	26	n/a	n/a	20
4CNpy stacking	8.0	11	10.0	10.9	9.0
Acceptor-acceptor stacking	n/a	21	10.7	32.2 – 32.7	29.1

Scheme S1. Solid state photochemical [2+2] cycloaddition of trans-1,2-bis(4-pyridyl)ethylene templated by π - π stacked columnar modules of XB (**a**) [3] and HB (**b**) [4]donor co-formers.

^{3.} E. Bosch, S. J. Kruse, H. R. Krueger, and R. H. Groeneman, Crystal Growth & Design, vol. 19, no. 6, pp. 3092–3096, Apr. 2019. DOI: 10.1021/acs.cgd.9b00275.

^{4.} G. Campillo-Alvarado, C. Li, D. C. Swenson, and L. R. MacGillivray, Crystal Growth & Design, vol. 19, no. 5, pp. 2511–2518, Mar. 2019. DOI: 10.1021/acs.cgd.9b00035

b

 Figure S4. Fragment or crystal packing of CymRuX2(4CNpy) (X=CI (CIDFIE [5]), I (5, disorder of*i*-Pr group is omitted for clarity)),

 Selected distances (Å):

 CymRuCl2(4CNpy) (CIDFIE)

 N(2)-H(2) 2.70,

 C(6)-N(2) 3.16(1);

 CymRul2(4CNpy)

 Ru(1)-I(1)
 2.741(8)

 Ru(1)-I2
 2.728(1)

 Ru(1)-N(1)
 2.135(4)

^{5.} D.K.Gupta, A.N.Sahay, D.S.Pandey, N.K.Jha, P.Sharma, G.Espinosa, A.Cabrera, M.C.Puerta, P.Valerga, *J.Organomet.Chem.* (1998), **568**, 13

Scheme S2 Preference for I---N_{py} and I---I-Pt XBs in (4'-(4-cyanophenyI)-2,2':6',2"-terpyridine) trimethyl platinum(IV) iodide / $p-C_6F_4I_2$ (**a**) and C_6F_5I (**b**)co-crystals [6].

^{6.} B.N. Ghosh, M. Lahtinen, E. Kalenius, P. Mal, K. Rissanen, Cryst. Growth Des. 16 (2016) 2527

Figure S5. Molecular electrostatic potential map for **CymRuCl₂(4CNpy**), (0.001 e/A³ electron density isosurface), showing the iso-potential areas for CI and V_{max}on CN group (colored in gray).

Figure S6. Molecular electrostatic potential map for **4CNpy**_{*t*}(0.001 e/A³ electron density isosurface), showing V_{max} on CN group (-33.3 kcal/mol). Compare with N_{py} (-26.6 kcal/mol)

Figure S7. Fragment or crystal packing of **CymRul**₂(4CNpy)p-DITFB, showing (a) intermolecular interaction energies (Crystal Explorer 17.5 TONTO B3LYP-DGDZVP , kJ/mol) and (b) I----I halogen bond angles (I---I-Ru).

Table S5. Energy frameworks in 2. .a) total energy , b) electrostatic c) dispersion at different cut-off levels.

Note that **total energy** is the sum of the four energy components, **scaled** using the scale factors below:

Energy Model	k_ele	k_pol	k_disp	k_rep
B3LYP/6-31G(d,p) electron densities	1.057	0.740	0.871	0.618

Cutoff	Full energy framework	Electrostatic	
(kJ/mol)			
-12			o tra o tra o
-17	ELELI		offic offic of
-22	of o star of o water of o star of o water of o		Office office

