Supplementary Information: Anhydrous cadmium oxalate polymorphism: a first principle study

Raffaella Demichelis

Curtin Institute for Computation, The Institute for Geoscience Research (TIGeR) and School of Molecular and Life Science, GPO Box U1987, 6845 Perth, Western Australia, Australia

This file contains IR and Raman active modes and intensities for the three phases, and fractional coordinates of CdC_2O_4 ·3 H₂O. Oscillator strengths are reported in separate files.

	ν_{IR}	Sym	I_{IR}	ν_{Raman}	Sym	I_p	I_{pl}	I_{pp}	I_{xx}	I_{xy}	I_{xz}	I_{yy}	I_{yz}	Izz
1	78.8	A_u	2.94	86.1	A_g	285.27	168.79	116.48	27.08	0.00	69.65	260.26	0.00	17.95
2	90.6	B_u	27.58	184.7	B_g	161.98	92.56	69.42	0.00	123.81	0.00	0.00	4.23	0.00
3	97.0	A_{u}	5.28	189.3	A_g	449.34	324.36	124.98	388.63	0.00	39.84	112.18	0.00	55.09
4	113.5	B_u	3.13	199.8	B_g	135.78	77.59	58.19	0.00	56.79	0.00	0.00	50.54	0.00
5	123.9	A_{u}	15.12	232.0	B_g	258.40	147.66	110.74	0.00	52.02	0.00	0.00	152.23	0.00
6	163.6	B_u	6.75	234.3	A_g	324.65	222.55	102.10	31.21	0.00	9.32	4.31	0.00	418.09
7	172.3	A_{u}	0.09	504.8	A_{g}	652.59	612.46	40.13	209.92	0.00	32.47	430.09	0.00	61.63
8	197.5	A_{u}	11.16	539.2	Bg	73.15	41.80	31.35	0.00	24.40	0.00	0.00	33.43	0.00
9	205.5	Bu	16.84	592.1	A_{g}	84.44	62.26	22.18	7.95	0.00	3.34	14.52	0.00	88.85
10	267.8	Bu	82.36	599.4	Bg	51.68	29.53	22.15	0.00	4.49	0.00	0.00	36.37	0.00
11	279.2	A_{u}	2.78	833.4	A_g	112.41	64.61	47.79	24.67	0.00	22.50	97.46	0.00	10.16
12	433.5	A_{u}	1.71	836.6	B_g	11.37	6.50	4.87	0.00	0.76	0.00	0.00	8.23	0.00
13	437.1	B_u	11.71	904.3	B_g	76.75	43.86	32.89	0.00	55.88	0.00	0.00	4.79	0.00
14	517.0	B_u	49.51	906.9	A_g	133.09	128.09	5.01	57.45	0.00	2.60	75.80	0.00	14.37
15	524.7	A_{u}	26.48	1461.6	B_g	130.39	74.51	55.88	0.00	66.97	0.00	0.00	36.10	0.00
16	794.7	A_{u}	40.16	1472.3	A_g	1000.00	852.43	147.57	103.69	0.00	71.37	23.53	0.00	1000.00
17	796.6	B_u	26.95	1599.0	A_g	79.86	62.19	17.67	0.65	0.00	6.73	0.76	0.00	93.06
18	1328.1	A_{u}	100.04	1615.9	Bg	12.98	7.41	5.56	0.00	9.37	0.00	0.00	0.88	0.00
19	1333.3	Bu	83.50											
20	1588.1	Bu	1000.00											
21	1605.8	$A_{\mathcal{H}}$	0.07											

Table 1: Computed IR and Raman active wavenumbers (ν , in cm⁻¹) for β -CdC₂O₄. Intensities (I, in arbitrary units) have been normalised, with the highest intensity assuming a value of 1000.00. For Raman spectra, the parallel (I_{pl}) and perpendicular (I_{pp}) components to the polycrystalline isotropic intensities (I_p) and the single crystal directional intensities (I_{xx} , I_{xy} , I_{xz} , I_{yy} , I_{yz} , I_{zz}) are reported. Raman spectra are calculated assuming an incident laser wavelength of 532 nm and a temperature of 300 K.

Preprint submitted to Journal of PATEX Templates

Email address: raffaella.demichelis@curtin.edu.au (Raffaella Demichelis)

	VIB	Sym	IIR	VBaman	Sym	In	Inl	Ipp	Ixx	Ixy	Ixz	Iuu	Iuz	Izz
1	51.7	B14	0.12	40.6	B _{1a}	197.72	112.99	84.74	0.00	132.60	0.00	0.00	0.00	0.00
2	68.6	B_{3u}	0.29	57.1	B_{1a}	77.93	44.53	33.40	0.00	52.27	0.00	0.00	0.00	0.00
3	88.3	B_{1y}	0.30	78.1	B_{3a}	0.12	0.07	0.05	0.00	0.00	0.08	0.00	0.00	0.00
4	93.4	B_{2u}	23.60	88.0	B_{3a}	47.70	27.26	20.44	0.00	0.00	31.99	0.00	0.00	0.00
5	123.2	B_{3u}	22.05	106.1	B_{1a}	2.66	1.52	1.14	0.00	1.78	0.00	0.00	0.00	0.00
6	132.9	B_{2u}	27.78	109.6	A_a	25.59	22.28	3.31	0.04	0.00	0.00	4.64	0.00	22.45
7	139.6	B_{2u}	15.17	110.7	B_{2a}	270.25	154.43	115.82	0.00	0.00	0.00	0.00	181.24	0.00
8	162.0	B_{1u}	5.11	131.1	B_{3a}	472.07	269.75	202.31	0.00	0.00	316.59	0.00	0.00	0.00
9	173.8	B_{3u}	0.02	152.5	B_{2a}	268.48	153.42	115.06	0.00	0.00	0.00	0.00	180.05	0.00
10	200.0	B_{2u}	11.54	154.2	A_q	149.23	87.66	61.57	93.34	0.00	0.00	19.16	0.00	85.42
11	210.1	B_{1u}	123.71	179.7	A_q	233.35	141.11	92.24	28.88	0.00	0.00	159.18	0.00	117.63
12	251.5	B_{1u}	2.57	184.4	B_{2q}	158.52	90.59	67.94	0.00	0.00	0.00	0.00	106.31	0.00
13	251.8	B_{3u}	98.70	194.7	B_{1q}	509.16	290.95	218.21	0.00	341.47	0.00	0.00	0.00	0.00
14	273.0	B_{3u}	0.85	206.5	B_{3q}	88.78	50.73	38.05	0.00	0.00	59.54	0.00	0.00	0.00
15	418.7	B_{1u}	11.53	222.3	A_q	306.73	182.40	124.33	1.48	0.00	0.00	91.90	0.00	311.35
16	423.3	B_{3u}	0.00	222.8	B_{2q}	17.28	9.88	7.41	0.00	0.00	0.00	0.00	11.59	0.00
17	442.8	B_{3u}	0.48	237.7	B_{1q}	0.40	0.23	0.17	0.00	0.27	0.00	0.00	0.00	0.00
18	456.6	B_{1u}	0.30	248.3	B_{3q}	395.32	225.89	169.42	0.00	0.00	265.12	0.00	0.00	0.00
19	502.5	B_{2u}	32.82	508.6	A_q	425.19	419.28	5.91	92.87	0.00	0.00	91.11	0.00	220.78
20	517.1	B_{1u}	4.21	510.2	B_{2q}	29.80	17.03	12.77	0.00	0.00	0.00	0.00	19.99	0.00
21	517.3	B_{3u}	34.87	522.4	A_g	330.45	226.42	104.03	397.25	0.00	0.00	1.33	0.00	9.37
22	786.2	B_{1u}	37.44	533.5	B_{2q}	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
23	789.3	B_{2u}	52.69	594.0	B_{1g}	6.49	3.71	2.78	0.00	4.36	0.00	0.00	0.00	0.00
24	791.6	B_{3u}	9.61	616.4	B_{3g}	98.33	56.19	42.14	0.00	0.00	65.94	0.00	0.00	0.00
25	1333.4	B_{2u}	174.21	618.2	B_{2q}	29.54	16.88	12.66	0.00	0.00	0.00	0.00	19.81	0.00
26	1338.9	B_{1u}	61.46	618.6	A_{g}	71.44	54.75	16.69	4.16	0.00	0.00	1.56	0.00	77.03
27	1340.5	B_{3u}	125.75	846.1	B_{1g}	3.20	1.83	1.37	0.00	2.15	0.00	0.00	0.00	0.00
28	1599.9	B_{1u}	1000.00	846.8	B_{3g}	8.16	4.66	3.50	0.00	0.00	5.47	0.00	0.00	0.00
29	1627.2	B_{3u}	806.20	851.7	B_{1g}	22.25	12.71	9.53	0.00	14.92	0.00	0.00	0.00	0.00
30	1628.2	B_{1u}	148.17	852.4	B_{3g}	0.16	0.09	0.07	0.00	0.00	0.11	0.00	0.00	0.00
31	1693.9	B_{3u}	57.70	901.5	B_{2g}	7.18	4.11	3.08	0.00	0.00	0.00	0.00	4.82	0.00
32				905.6	B_{2g}	23.32	13.33	9.99	0.00	0.00	0.00	0.00	15.64	0.00
33				906.3	A_g	86.95	63.60	23.36	9.94	0.00	0.00	78.98	0.00	14.65
34				910.5	A_g	210.97	187.59	23.37	175.61	0.00	0.00	1.39	0.00	43.02
35				1463.5	B_{2g}	444.91	254.24	190.68	0.00	0.00	0.00	0.00	298.38	0.00
36				1463.8	A_{g}	286.67	200.58	86.09	27.85	0.00	0.00	280.26	0.00	41.89
37				1466.0	B_{2g}	7.15	4.09	3.07	0.00	0.00	0.00	0.00	4.80	0.00
38				1468.4	A_g	1000.00	805.94	194.06	8.77	0.00	0.00	112.33	0.00	1000.00
39				1605.4	B_{1g}	8.95	5.11	3.84	0.00	6.00	0.00	0.00	0.00	0.00
40				1644.5	B_{3g}	29.11	16.64	12.48	0.00	0.00	19.52	0.00	0.00	0.00
41				1650.9	B_{2g}	149.83	85.62	64.21	0.00	0.00	0.00	0.00	100.49	0.00
42				1655.7	A_g	9.49	8.74	0.76	4.80	0.00	0.00	4.73	0.00	0.09

Table 2: Computed IR and Raman active wavenumbers and intensities for γ -CdC₂O₄. Symbols and units as in Table 1.

	х	У	\mathbf{Z}		
Cd	-0.44654	-0.18456	0.21023		
O11	0.41763	0.11092	0.31170		
O12	0.37387	0.24957	-0.47889		
C1	0.44044	0.10293	0.45237		
O21	0.27717	-0.05227	0.03728		
O22	-0.03859	-0.20511	0.17623		
C2	0.06800	-0.07443	0.06168		
O3	-0.33837	-0.49700	0.13565		
H31	-0.21532	0.41544	0.18944		
H32	-0.45508	0.41124	0.15738		
O4	0.23067	-0.35001	0.38768		
H41	0.11582	-0.32239	0.32021		
H42	0.27251	0.49763	0.42761		
O5	-0.05935	0.24823	0.31465		
H51	0.10609	0.21233	0.29424		
H51	-0.10874	0.27280	0.42374		

Table 3: Calculated (B3LYP) fractional coordinates for $\rm CdC_2O_4\cdot 3H_2O.$

	$\nu_{IR} (A_u)$	I_{IR}	$\nu_{Raman} (A_g)$	I_p	I_{pl}	I_{pp}	I_{xx}	I_{xy}	I_{xz}	I_{yy}	Iyz	Izz
1	81.5	2.17	72.0	301.08	172.10	128.97	12.19	6.20	138.25	134.30	48.45	202.77
2	88.9	4.11	81.3	307.34	186.78	120.55	181.59	22.66	152.42	10.39	81.41	26.43
3	101.4	5.18	92.3	346.40	210.52	135.88	121.90	12.68	45.06	206.71	103.66	172.95
4	115.8	3.97	100.5	330.34	273.64	56.70	127.73	0.31	41.93	68.74	114.97	150.64
5	128.3	8.91	103.8	21.53	14.92	6.61	0.41	11.67	0.02	10.63	5.40	2.88
6	135.2	10.05	116.3	103.47	75.58	27.89	0.14	17.30	32.70	95.13	7.03	15.20
7	140.8	5.68	123.2	116.33	67.05	49.29	24.93	92.91	17.71	19.06	3.68	10.49
8	158.8	17.43	140.5	135.15	96.51	38.63	7.23	21.54	0.07	116.58	39.90	50.18
9	168.2	2.45	148.7	361.28	212.25	149.03	219.92	191.83	21.11	90.57	63.37	9.13
10	171.4	12.22	161.3	75.04	59.29	15.75	0.08	0.42	15.92	9.98	0.32	111.81
11	186.8	7.01	198.9	280.91	164.01	116.90	72.48	9.08	32.11	8.58	98.01	320.51
12	218.7	27.71	204.7	305.93	176.76	129.17	47.89	66.46	142.31	16.29	6.47	249.04
13	240.3	23.10	220.2	202.62	130.48	72.14	345.96	1.13	2.37	86.93	6.94	15.88
14	252.5	27.56	229.9	90.55	64.43	26.12	8.56	14.91	0.18	8.65	0.31	151.42
15	277.2	3.16	248.2	80.98	46.87	34.11	8.15	0.25	2.87	79.47	13.29	76.28
16	291.8	28.64	282.3	58.32	47.97	10.35	79.23	2.71	1.66	26.96	0.87	0.74
17	340.1	13.59	287.3	178.44	163.61	14.82	40.52	1.76	12.42	78.24	20.21	142.78
18	406.4	3.15	349.3	48.79	42.40	6.39	0.03	0.95	3.39	36.55	0.26	48.52
19	426.4	48.91	506.8	245.16	222.33	22.83	136.02	13.21	2.31	164.71	39.54	47.22
20	438.5	3.74	529.7	239.82	191.38	48.43	138.01	15.24	100.70	12.14	2.63	105.41
21	504.5	18.22	540.9	124.49	71.64	52.86	13.76	10.84	62.52	35.00	43.05	21.56
22	512.7	23.46	588.5	49.20	28.55	20.65	1.47	11.94	7.00	46.71	0.02	33.31
23	603.3	44.69	600.3	20.48	11.73	8.75	5.28	0.10	0.70	10.21	16.38	0.11
24	617.4	16.48	608.4	79.29	54.49	24.80	18.77	3.51	5.10	51.13	16.05	58.70
25	689.8	54.92	626.5	48.25	27.89	20.35	15.60	1.38	8.13	34.26	24.19	0.00
26	713.4	51.70	691.7	29.75	17.83	11.92	39.56	5.69	7.15	0.96	0.17	4.68
27	765.9	109.39	730.1	17.24	10.97	6.27	1.48	5.82	1.84	0.00	0.01	23.38
28	785.5	6.55	811.8	13.76	11.36	2.40	7.42	0.00	0.01	4.90	6.47	2.35
29	793.2	77.11	852.7	12.96	8.65	4.31	0.12	5.29	2.40	0.03	0.13	13.69
30	929.7	119.21	856.7	28.80	18.32	10.48	48.60	0.80	0.27	9.84	2.87	0.79
31	978.3	5.53	893.2	70.72	61.14	9.57	112.33	1.46	0.12	0.67	1.15	18.76
32	1042.0	60.56	900.7	50.30	46.99	3.31	9.99	4.86	1.88	29.21	0.19	38.57
33	1333.4	171.15	980.5	108.19	87.35	20.83	88.25	1.45	19.71	45.25	21.44	1.84
34	1335.4	17.52	986.9	39.54	27.75	11.79	19.46	0.02	26.90	0.08	0.22	13.93
35	1571.0	375.28	1047.7	16.13	10.63	5.50	18.53	2.32	0.00	4.09	2.39	4.93
36	1622.1	312.18	1465.4	359.76	281.07	78.69	15.80	0.03	12.09	109.17	177.94	244.35
37	1628.2	104.12	1474.0	542.51	434.75	107.76	170.90	75.62	213.91	83.34	4.10	269.98
38	1652.5	46.26	1604.3	29.82	18.37	11.46	4.16	7.69	7.01	7.85	9.38	10.37
39	1692.4	63.28	1611.7	12.22	8.73	3.49	0.03	1.03	5.81	0.82	0.00	12.32
40	3191.8	622.68	1655.2	35.77	24.10	11.67	1.78	0.04	16.13	37.68	2.99	3.28
41	3296.1	239.48	1661.4	38.84	22.57	16.27	35.37	0.39	9.13	14.71	3.61	17.86
42	3331.1	1000.00	1698.7	20.29	11.64	8.65	7.71	0.11	5.42	0.31	10.79	8.82
43	3495.0	196.29	3197.6	885.41	758.73	126.68	657.19	152.76	157.27	186.96	9.84	246.05
44	3636.3	256.00	3296.9	1000.00	910.19	89.81	228.22	76.06	70.40	785.43	67.30	421.58
45	3719.3	81.77	3337.1	329.03	190.86	138.17	22.14	34.44	61.20	389.68	55.39	84.69
46			3489.9	264.89	188.58	76.32	11.66	0.01	26.77	0.29	111.91	293.88
47			3638.1	494.91	361.80	133.12	1000.00	18.74	10.14	0.73	5.98	3.02
48			3716.5	427.34	378.31	49.03	140.33	50.01	5.42	402.11	47.18	66.58

Table 4: Computed IR and Raman active wavenumbers and intensities for $CdC_2O_4 \cdot 3 H_2O$. Symbols and units as in Table 1. As mentioned in the paper, the values >3000 cm⁻¹ are expected to be red-shifted by about 200 cm⁻¹ due to the highly anharmonic behaviour of the OH oscillator. To realte these data with the figures in the main text, a correction of $-200 cm^{-1}$ should be applied to values >3000 cm⁻¹.