Supporting information for:

Role of 4-nitrobenzoic acid polymorphs in the crystallization process of the organic acid-base multicomponent system

Lilia Croitor,^{a, b} Mihaela F. Petric,^a Elisabeta I. Szerb,^a Gabriela Vlase,^c Pavlina N. Bourosh,^b Yurii Chumakov,^{b,d} Manuela E. Crisan^{*a}

 a"Coriolan Dragulescu" Institute of Chemistry, Romanian Academy, Timisoara, Romania;
^bInstitute of Applied Physics, Chisinau, Republic of Moldova;
^cWest University of Timisoara, Research Centre: Thermal Analysis in Environmental Problems, Timisoara, Romania;
^dGebze Institute of Technology, Cayirova, Turkey

Experimental

1. Crystal data and structure refinement for 4N				
	Compound	4NBH*		
	Empirical formula	$C_7H_5N_1O_4$		
	Formula weight	167.12		
	Т	293(2) K		
	Wavelength	0.71073		
	Crystal system	Monoclinic		
	Space group	C2/c		
	Ζ	8		
	$a(\text{\AA})$	21.297(6)		
	b(Å)	5.0396(12)		
	c(Å)	12.909(3)		
	β(°)	96.66(2)		
	$V(Å^3)$	1376.2(6)		
	Dcalc(mg cm ⁻³)	1.613		
	μ (mm ⁻¹)	0.136		
	<i>F</i> (000)	688		
	Reflections	2261		
	collected/unique	2201		
	Parameters	110		
	GOF on F ²	0.994		
	$R_1, wR_2 [I > 2\sigma(I)]$	0.0643, 0.1140		
	R_1 , w R_2 (all data)	0.1447, 0.1568		

Table S1. Crystal data and structure refinement for 4NBH*

Figure S1. (a) XRPD overlay of experimental and theoretical patterns of 4NBH; (b) XRPD overlay of experimental 4NBH* and NBZOAC-15 from CSD.

Figure S2. FTIR spectra comparison of 4NBH* and 4NBH polymorphs

Figure S3. Thermogravimetric curves of 4NBH* (pink) and 4NBH (grey) polymorphs

N(1)-C(4)	1.475(3)	C(1)-C(2)	1.517(3)
N(1)-C(1)	1.482(3)	C(5)-C(10)	1.385(3)
N(1)-C(3)	1.485(3)	C(5)-C(6)	1.391(3)
N(2)-C(8)	1.465(2)	C(5)-C(11)	1.505(3)
O(1)-C(2)	1.406(3)	C(6)-C(7)	1.377(3)
O(2)-C(11)	1.246(2)	C(7)-C(8)	1.378(3)
O(3)-C(11)	1.250(2)	C(8)-C(9)	1.382(3)
O(4)-N(2)	1.222(2)	C(9)-C(10)	1.379(3)
O(5)-N(2)	1.225(2)		
C(4)-N(1)-C(1)	112.90(19)	C(6)-C(5)-C(11)	120.09(16)
C(4)-N(1)-C(3)	109.2(2)	C(7)-C(6)-C(5)	121.11(17)
C(1)-N(1)-C(3)	111.11(18)	C(6)-C(7)-C(8)	118.37(17)
O(4)-N(2)-O(5)	123.02(17)	C(7)-C(8)-C(9)	122.22(17)
O(4)-N(2)-C(8)	118.56(17)	C(7)-C(8)-N(2)	118.58(16)
O(5)-N(2)-C(8)	118.41(16)	C(9)-C(8)-N(2)	119.20(17)
N(1)-C(1)-C(2)	113.12(19)	C(10)-C(9)-C(8)	118.29(17)
O(1)-C(2)-C(1)	112.2(2)	C(9)-C(10)-C(5)	121.13(17)
C(10)-C(5)-C(6)	118.87(17)	O(2)-C(11)-O(3)	124.99(19)
C(10)-C(5)-C(11)	121.02(16)	O(2)-C(11)-C(5)	117.59(17)
		O(3)-C(11)-C(5)	117.42(17)

Table S2. Bond lengths [Å] and angles [°] for DMEA4NB

Figure S4. FT-IR spectra of DMEA4NB single crystals (reactions 1 and 2).

Figure S5. Thermogravimetric curves (TG and heat flow) of DMEA4NB single crystals (reactions 1- blue and reaction 2 - red) at a heating rate of 10 °C min⁻¹, in the air.

Figure S6. Optical micrographs of DMEA4NB collected at different heating temperatures.