Electronic Supplementary Information (ESI)

Vapour- and solvent-mediated crystalline transformations in Mo(VI) hydrazone complexes controlled by noncovalent interactions

Mirna Mandarić, a Biserka Prugovečki, a Danijela Cvijanović, b Jelena Parlov Vuković, c Jasna Lovrić, b Mirjana Skočibušić,^d Renata Odžak,^e Marina Cindrić^a and Višnja Vrdoljak^{*a}

Contents

1. Crystallographic data	2
2. Polymer 1 and polymorphic forms 2α , 2β , and 2γ	10
3. Vapour-mediated solid-state transformation	14
4. Protonation reactions of molybdenum complexes with mineral acids	19
5. Characterisation	22
IR spectroscopy	22
Thermogravimetric analysis	23
NMR spectroscopy	25
6. Antimicrobial activity	

a. University of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, 10000 Zagreb, Croatia; E-mail: visnja.vrdoljak@chem.pmf.hr.

- ^b University of Zagreb, School of Medicine, Department of Chemistry and Biochemistry, Šalata 3, 10000 Zagreb, Croatia.
 ^c INA-Industrija nafte d.d., Refining & marketing business division, Product development department, Lovinčićeva bb, 10002 Zagreb, Croatia
- ^d University of Split, Faculty of Science, Department of Biology, Ruđera Boškovića 33, 21000 Split, Croatia ^e University of Split, Faculty of Science, Department of Chemistry, Ruđera Boškovića 33, 21000 Split, Croatia

1. Crystallographic data

Compound	1	<u>2α</u>	2β	2γ	2w-α
Formula	$C_{14}H_{11}MoN_3O_5$	$C_{15}H_{15}MoN_3O_6$	$C_{15}H_{15}MoN_3O_6$	$C_{15}H_{15}MoN_3O_6$	$C_{14}H_{13}MoN_{3}O_{6}$
Formula weight	397.20	429.24	429.24	429.24	415.21
Space group	P bca	P -1	P -1	<i>P</i> -1	<i>P</i> -1
a/Å	8.0702(3)	6.6351(3)	7.2390(3)	7.6639(4)	6.6377(4)
<i>b</i> /Å	10.9452(4)	7.6159(3)	10.6694(4)	9.7687(4)	10.1622(6)
c/Å	31.8143(12)	16.3967(8)	11.8410(4)	11.6636(4)	11.6931(6)
α'°	90	91.525(3)	106.795(3)	76.424(3)	97.524(5)
$eta\!\!/^{\circ}$	90	93.644(4)	95.133(3)	76.154(4)	94.078(4)
$\gamma^{\prime \circ}$	90	95.790(3)	104.217(3)	89.268(6)	93.698(5)
$V/Å^3$	2810.16(18)	822.21(6)	835.94(6)	823.28(6)	777.80(8)
$D_{ m calc}/ m g~cm^{-3}$	1.878	1.734	1.705	1.732	1.773
μ/mm^{-1}	0.965	0.836	0.822	0.835	0.880
<i>F</i> (000)	1584	432	432	432	416
Θ range/°	4.2-27.0	4.3-27.0	4.2-27.0	4.2-27.0	4.2-27.0
T/K	150	293	150	150	293
Radiation wavelength	0.71073	0.71073	0.71073	0.71073	0.71073
Range of <i>h</i> , <i>k</i> , <i>l</i>	-10-8, -13-12,-39-40	-8-8, -9-9, -20-20	-9-9, -13-13, -15-15	-9-9, -12-12, -14-14	-8-8, -12-12, -14-14
Reflections collected	10923	7686	14008	13777	12804
Independent	3048	3576	3630	3580	3364
Observed reflections	2522	3318	3290	3246	2794
R _{int}	0.034	0.028	0.029	0.039	0.071
R^a , $wR^b[I \ge 2\sigma(I)]$	0.0298, 0.0714	0.0301, 0.0749	0.0231, 0.0559	0.0246, 0.0612	0.0565, 0.1319
Goodness-of-fit, S ^c	1.06	1.04	1.05	1.07	1.13
No. of parameters	208	230	227	231	223
No. of restraints	0	0	0	0	0
$\Delta \rho_{\min}, \Delta \rho_{\max}$	-0.34, 0.48	-0.73, 0.79	-0.32, 0.23	-0.38, 0.56	-0.68, 0.93

Table S1. Crystallographic data for compounds $[MoO_2(L)]_n$ (1), $[MoO_2(L)(MeOH)]$ (2 α , 2 β , and 2 γ), and $[MoO_2(L)(H_2O)]$ (2w- α).

 ${}^{a}R = \Sigma \left| \left| F_{o} \right| - \left| F_{o} \right| \right| / \Sigma \left| F_{o} \right|; {}^{b}WR = \left[\Sigma (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma W (F_{o}^{2})^{2} \right]^{1/2}; {}^{c}S = \Sigma [W (F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param})]^{1/2}$

Compound	3	4	5·MeOH	6
Formula	C15H16MoN3O6,Cl	C15H16MoN3O6,Br	C15H16M0N3O6, NO3, CH4O	C ₁₅ H ₁₆ MoN ₃ O ₆ , CH ₃ OSO ₃
Formula weight	465.70	510.15	524.30	541.34
Space group	$P 2_{1/c}$	$P 2_{1}/c$	P 21	P 21
a/Å	8.9395(4)	8.9754(2)	7.6699(2)	7.2340(3)
<i>b</i> /Å	12.0713(4)	12.0144(9)	13.2183(3)	13.8890(6)
c/Å	16.8359(6)	16.8807(6)	10.0377(2)	10.4510(5)
lpha/°	90	90	90	90
$\beta^{\prime \circ}$	95.768(4)	96.192(3)	92.579(2)	100.841(4)
γ/°	90	90	90	90
$V/Å^3$	1807.59(12)	1809.69(16)	1016.62(4)	1031.30(8)
$D_{\rm calc}/{ m g~cm^{-3}}$	1.711	1.872	1.713	1.743
μ/mm^{-1}	0.910	2.970	0.708	0.797
F(000)	936	1008	532	548
Θ range/°	3.9-27.0	4.2-29.0	4.5-27.0	4.2-27.0
T/K		150	150	150
Radiation wavelength	0.71073	0.71073	0.71073	0.71073
Range of h, k, l	-8-11, -15-15, -21-21	-12-11, -16-14, -22-13	-9-9, -16-16, -12-12	-9-9, -17-17, -13-13
Reflections collected	15313	10292	4901	7173
Independent reflections	3928	4235	3476	4281
Observed reflections	2601	3747	3402	4216
$(I \ge 2\sigma)$				
R _{int}	0.041	0.022	0.016	0.017
R^a , $wR^b[I \ge 2\sigma(I)]$	0.0289, 0.0530	0.0260, 0.0562	0.0204, 0.0507	0.0207, 0.0511
Goodness-of-fit, Sc	0.84	1.04	1.08	1.05
No. of parameters	243	239	289	290
No. of restraints	0	0	0	0
$\Delta \rho_{\min}, \Delta \rho_{\max}$ (e Å ⁻³)	-0.26, 0.29	-0.41, 0.45	-0.54, 0.26	-0.26, 0.78

Table S2. Crystallographic data for compounds $[MoO_2(HL)(MeOH)]Cl$ (3), $[MoO_2(HL)(MeOH)]Br$ (4), $[MoO_2(HL)(MeOH)]NO_3 \cdot MeOH$ (5 · MeOH), and $[MoO_2(HL)(MeOH)]MeOSO_3$ (6).

 ${}^{a}R = \Sigma \left[\left| F_{o} \right| - \left| F_{o} \right| \right] / \Sigma \left| F_{o} \right|; {}^{b}WR = \left[\Sigma (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma W (F_{o}^{2})^{2} \right]^{1/2}; {}^{c}S = \Sigma \left[W (F_{o}^{2} - F_{c}^{2})^{2} / (N_{obs} - N_{param}) \right]^{1/2}$

	1	20	28	2.	2w-a
Mo1-01	1 7037(17)	1 7053(18)	1 6856(16)	1 7039(15)	1 701(3)
Mo1-02	1.690(2)	1.6982(17)	1.6990(16)	1.6967(16)	1.687(4)
Mo1-03	1 9252(18)	1.0302(17)	1.0750(10)	1.0307(10)	1.917(4)
Mo1-04	2.0258(17)	2.0122(17)	2.0140(14)	2.0123(15)	1.917(4)
Mo1-06	2.0238(17)	2.0122(17)	2.0140(14)	2.0125(15)	1.998(4)
Mo1-00	-	2.5587(17)	2.3394(13)	2.3773(13)	2.322(4)
Mol-N2	2.241(2)	2.219(2)	2.2439(13)	2.2404(17)	2.213(4)
MOI-N3	2.459(2)	-	-	-	-
C1–N1	1.300(3)	1.284(3)	1.284(3)	1.298(3)	1.266(6)
C2-N2	1.291(3)	1.290(3)	1.293(3)	1.305(3)	1.286(7)
N1-N2	1.413(3)	1.399(3)	1.397(2)	1.400(2)	1.411(6)
O1-Mo1-O2	105.79(9)	105.25(9)	104.99(8)	106.13(7)	105.55(16)
O1-Mo1-O3	104.28(9)	100.82(7)	100.24(8)	103.05(7)	101.15(17)
O1-Mo1-O4	95.99(9)	98.32(8)	97.17(7)	96.16(7)	98.30(17)
O1-Mo1-O6	-	84.26(7)	171.02(7)	84.36(6)	85.09(16)
O1-Mo1-N1	159.57(10)	157.88(7)	94.65(7)	156.50(7)	159.25(17)
O1-Mo1-N3 ⁱ	83.24(9)	-	-	-	-
O2-Mo1-O3	99.59(9)	99.24(8)	104.33(7)	101.00(7)	98.38(17)
O2-Mo1-O4	98.27(8)	95.96(8)	95.39(7)	96.32(7)	95.67(17)
O2-Mo1-O6	-	170.29(8)	83.59(6)	168.77(7)	169.27(16)
O2-Mo1-N1	92.44(8)	95.78(8)	157.95(7)	95.53(7)	94.11(17)
O2-Mo1-N3 ⁱ	170.25(8)	-	-	-	-
O3-Mo1-O4	148.07(7)	151.40(7)	149.18(6)	149.27(6)	151.92(14)
O3-Mo1-O6	-	80.54(6)	79.78(6)	80.03(6)	80.63(15)
O3-Mo1-N1	81.12(7)	82.14(6)	81.45(6)	81.14(6)	82.10(15)
O3-Mo1-N3 ⁱ	81.32(7)	-	-	-	-
O4-Mo1-O6	-	80.46(6)	79.15(6)	78.23(6)	81.07(14)
O4-Mo1-N1	71.85(7)	72.31(7)	71.92(6)	72.03(6)	72.73(15)
O4-Mo1-N3 ⁱ	76.80(7)	-	-	-	-
N1-Mo1-N3 ⁱ	78.07(8)	-	-	-	-
O6-Mo1-N1	-	74.55(6)	76.44(5)	73.50(6)	75.16(16)

Table S3. Selected bond lengths (Å) and angles (°) for compounds 1, 2α , 2β , 2γ , and $2w-\alpha$.

ⁱ 2-*x*,1/2+*y*,1/2-*z*

	3	4	5·MeOH	6
Mo1-O1	1.6847(18)	1.6926(17)	1.694(2)	1.709(2)
Mo1-O2	1.7030(16)	1.7113(16)	1.708(2)	1.695(2)
Mo1-O3	1.9220(17)	1.9245(17)	1.926(2)	1.920(2)
Mo1–O4	2.0132(16)	2.0100(16)	2.025(2)	2.011(2)
Mo1-O6	2.3216(18)	2.3301(17)	2.329(2)	2.302(3)
Mo1-N1	2.2275(19)	2.2277(18)	2.228(3)	2.244(3)
C1-N1	1.296(3)	1.297(3)	1.294(4)	1.298(4)
C2-N2	1.293(3)	1.293(3)	1.297(4)	1.289(4)
N1-N2	1.397(3)	1.399(3)	1.396(4)	1.404(4)
O1-Mo1-O2	105.87(8)	106.01(8)	106.32(11)	105.10(11)
O1-Mo1-O3	100.54(8)	101.02(8)	99.50(10)	103.75(10)
O1-Mo1-O4	94.74(8)	94.75(8)	97.12(9)	96.76(9)
O1-Mo1-O6	170.09(8)	170.44(7)	170.88(10)	81.86(10)
O1-Mo1-N1	93.95(8)	94.20(8)	95.16(10)	154.95(11)
O2-Mo1-O3	102.23(8)	102.22(7)	103.95(9)	99.15(13)
O2-Mo1-O4	97.26(7)	97.04(7)	95.21(9)	95.08(12)
O2-Mo1-O6	82.96(8)	82.41(7)	82.02(10)	171.99(11)
O2-Mo1-N1	158.47(8)	158.04(7)	156.38(10)	98.29(11)
O3-Mo1-O4	150.78(7)	150.53(7)	149.83(9)	150.93(9)
O3-Mo1-O6	81.58(7)	81.21(7)	81.67(10)	82.75(11)
O3-Mo1-N1	81.87(7)	81.79(7)	81.54(10)	80.90(10)
O4-Mo1-O6	79.42(6)	79.46(6)	78.14(10)	79.97(10)
O4-Mo1-N1	72.30(7)	72.30(7)	72.01(10)	72.01(10)
O6-Mo1-N1	76.70(7)	76.84(6)	76.01(9)	74.25(10)

Table S4. Selected bond lengths (Å) and angles (°) for compounds 3, 4, 5•MeOH, and 6.

Table S5. Angle between phenyl and pyridyl moieties, $\varphi(^{\circ})$, angle between the five and sixmembered chelate rings, $\psi(^{\circ})$, and dihedral angle C14–O5–C11–C12, $\phi(^{\circ})$, for investigated compounds.

	$\varphi(^{\circ})$	ψ(°)	ϕ (°)
1	58.06(12)	11.06(9)	-175.9(2)
2α	5.53(11)	8.43(8)	-8.0(3)
2β	7.54(10)	8.21(7)	179.83(18)
2γ	22.97(11)	7.13(8)	4.5(3)
2w-α	3.2(3)	6.75(18)	6.9(9)
3	8.13(12)	5.39(9)	0.5(4)
4	10.35(11)	6.14(8)	1.6(3)
5-МеОН	3.55(15)	6.91(11)	-5.8(5)
6	4.41(16)	5.62(12)	2.9(5)

	D–H···A	D-H (Å)	H···A (Å)	D…A (Å)	D–H···A(°)
	O6-H61…N3 ^a	0.84(2)	1.88(2)	2.715(3)	173.2(17)
	$C1-H1\cdots O2^{b}$	0.93	2.34	3.263(3	171
2α	$C5-H5\cdotsO1^{c}$	0.93	2.38	3.282(3)	162
	$C10-H10\cdots O2^d$	0.93	2.50	3.242(3)	137
	C14−H14a···O1 ^e	0.96	2.52	3.374(5)	148
	π…π	$Cg3\cdots Cg3^a/{ m \AA}$	Slipage		
		3.6539(14)	1.360		
		$Cg4 \cdots Cg4^d \text{\AA}$	Slipage		
		3.6063(13)	1.225		
		Cg2…Cg4 ^d Å	Slipage		
		3.8719(12)	1.874		
	06–H61…N3 ^f	0.827(13)	1.891(15)	2.715(2)	174(2)
2β	$C6-H6\cdots O5^{f}$	0.93	2.59	3.370(2)	141
	$C14-H14a\cdots O2^{h}$	0.96	2.49	3.149(3)	126
	π…π	$Cg3\cdots Cg3^{i}/\AA$	Slipage		
		3.7510(11)	1.718		
		Cg3…Cg4 ^c /Å			
		3.8209(12)			
	O6−H6…N3 ^j	0.830(14)	1.884(14)	2.708(2)	172.1(16)
2γ	$C10-H10\cdots O5^k$	0.93	2.56	3.461(3)	163
	$O6-H1w\cdots N3^{l}$	0.85	1.90	2.730(7)	166
	$O6-H2w\cdots O1^m$	0.85(6)	1.96(6)	2.792(6)	169(5)
	$C1-H1\cdots O2^n$	0.93	2.28	3.203(6)	170
	$C10-H10\cdots O2^{i}$	0.93	2.55	3.328(7)	142
2w-α	$\pi \cdots \pi$	$Cg3\cdots Cg3^{l}/Å$	Slipage		
		3.595(4)	1.286		
		Cg3…Cg4º/Å	Slipage		
		3.606(3)	1.120		
		Cg4…Cg3°/Å	Slipage		
		$3.606(3)^1$	1.214		
		$Cg4\cdots Cg4^m$	Slipage		
		3.687(3)	1.336		

Table S6. Geometry of intermolecular hydrogen bonds (Å, °) and $\pi \cdots \pi$ interactions involved in the formation of dimers and between neighbouring dimer for compounds 2α , 2β , 2γ , and $2w-\alpha$.

^a1-x,1-y,-z; ^b1+x,y,z; ^c-x,1-y,-z; ^d1-x,1-y,1-z; ^e-x,-y,1-z; ^f-1-x,-y,-z; ^g-1+x,-1+y,-1+z; ⁱ1-x,1-y,-z; ^j x,1+y,z; ^k2-x,2-y,-z; ¹x, 1+y,z; ^m1-x,-y,1-z; ^m2-x,1-y,1-z; ⁿ-1+x,y,z; ^ox,-1+y,z

	D–H···A	D-H (Å)	HA (Å)	D…A (Å)	D-H···A(°)
	N3-H3Cl1	0.86	2.16	2.970(2)	158
	O6–H61…Cl1 ^a	0.825(17)	2.236(17)	3.0550(19)	171.7(15)
	C4−H4…O4	0.93	2.46	2.774(3)	100.00
3	$C5-H5\cdots O5^{b}$	0.93	2.45	3.354(3)	165
	$C6-H6\cdots O2^{c}$	0.93	2.47	3.119(3)	127
	$C10-H10\cdots C11^d$	0.93	2.76	3.596(3)	151
	C14–H14b…Cl1 ^e	0.96	2.68	3.638(3)	174
	$C15-H15c\cdots O1^{f}$	0.96	2.56	2.971(3)	106
	$\pi \cdots \pi$	$Cg3 {\cdots} Cg3^a/{\mathring{A}}$	Slippage		
		3.7814(15)	1.844		
	N3-H3···Br1 ^a	0.86	2.32	3.128(2)	156
	O6–H61…Br1	0.83(2)	2.38(2)	3.2053(16)	169.7(18)
	C1– $H1$ ···O1 ^g	0.93	2.60	3.268(3)	130
	$C4-H4\cdots O3^{h}$	0.93	2.58	3.387(3)	145
	$C5-H5\cdots O5^{b}$	0.93	2.44	3.339(3)	162
4	$C6-H6\cdots O2^i$	0.93	2.40	3.092(3)	131
		0.02	281	$2 \in 11(2)$	145
	C10–H10···Br1 ^j	0.93	2.04	5.044(5)	145
	C10–H10…Br1 ^j C14–H14a…O2 ^h	0.93 0.96	2.84 2.55	3.493(3)	145 168
	C10-H10 \cdots Br1 ^j C14-H14a \cdots O2 ^h C14-H14b \cdots Br1 ^k	0.93 0.96 0.96	2.84 2.55 2.75	3.493(3) 3.693(2)	168 168
	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π	0.93 0.96 0.96 Cg3…Cg3 ⁱ /Å	2.55 2.75 Slippage	3.493(3) 3.693(2)	143 168 168
	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π	0.93 0.96 0.96 Cg3…Cg3 ⁱ /Å 3.8141(12)	2.64 2.55 2.75 Slippage 1.936	3.493(3) 3.693(2)	143 168 168
	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m	0.93 0.96 0.96 Cg3…Cg3 ⁱ /Å 3.8141(12) 0.86	2.64 2.55 2.75 Slippage 1.936 1.87	3.493(3) 3.693(2) 2.729(4)	143 168 168 175
	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m	0.93 0.96 0.96 Cg3…Cg3 ⁱ /Å 3.8141(12) 0.86 0.86	2.55 2.75 Slippage 1.936 1.87 2.58	3.693(2) 2.729(4) 3.175(4)	143 168 168 175 128
	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8	0.93 0.96 0.96 Cg3…Cg3 ⁱ /Å 3.8141(12) 0.86 0.86 0.85(2)	2.64 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3)	3.644(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3)	143 168 168 175 128 166(4)
	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8 O7-H71···O9 ⁿ	0.93 0.96 0.96 Cg3Cg3 ⁱ /Å 3.8141(12) 0.86 0.86 0.85(2) 0.85(3)	2.64 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3) 1.98(3)	3.644(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3) 2.825(4)	143 168 168 175 128 166(4) 174(4)
5.МеОН	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8 O7-H71···O9 ⁿ C1-H1···O7	0.93 0.96 0.96 Cg3Cg3 ⁱ /Å 3.8141(12) 0.86 0.86 0.85(2) 0.85(3) 0.93	2.34 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3) 1.98(3) 2.46	3.644(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3) 2.825(4) 3.165(4)	143 168 168 175 128 166(4) 174(4) 132
5-МеОН	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8 O7-H71···O9 ⁿ C1-H1···O7 C5-H5···O9 ^o	0.93 0.96 0.96 Cg3Cg3 ⁱ /Å 3.8141(12) 0.86 0.86 0.85(2) 0.85(3) 0.93 0.93	2.54 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3) 1.98(3) 2.46 2.56	3.644(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3) 2.825(4) 3.165(4) 3.166(4)	143 168 168 175 128 166(4) 174(4) 132 123
5-МеОН	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8 O7-H71···O9 ⁿ C1-H1···O7 C5-H5···O9 ^o C6-H6···O1 ^p	0.93 0.96 0.96 Cg3Cg3 ⁱ /Å 3.8141(12) 0.86 0.86 0.85(2) 0.85(3) 0.93 0.93 0.93	2.64 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3) 1.98(3) 2.46 2.56 2.58	3.644(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3) 2.825(4) 3.165(4) 3.166(4) 3.238(4)	143 168 168 175 128 166(4) 174(4) 132 123 128
5∙МеОН	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8 O7-H71···O9 ⁿ C1-H1···O7 C5-H5···O9 ^o C6-H6···O1 ^p C10-H10···O2 ^r	0.93 0.96 0.96 Cg3Cg3 ⁱ /Å 3.8141(12) 0.86 0.85(2) 0.85(3) 0.93 0.93 0.93 0.93	2.34 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3) 1.98(3) 2.46 2.56 2.58 2.43	3.644(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3) 2.825(4) 3.165(4) 3.166(4) 3.238(4) 3.228(4)	143 168 168 175 128 166(4) 174(4) 132 123 128 144
5.МеОН	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8 O7-H71···O9 ⁿ C1-H1···O7 C5-H5···O9 ^o C6-H6···O1 ^p C10-H10···O2 ^r π ··· π	0.93 0.96 0.96 Cg3Cg3 ⁱ /Å 3.8141(12) 0.86 0.86 0.85(2) 0.85(3) 0.93 0.93 0.93 0.93 0.93 0.93 0.93	2.64 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3) 1.98(3) 2.46 2.56 2.58 2.43 Slipage	3.644(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3) 2.825(4) 3.165(4) 3.165(4) 3.238(4) 3.228(4)	143 168 168 175 128 166(4) 174(4) 132 123 128 144
5.МеОН	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8 O7-H71···O9 ⁿ C1-H1···O7 C5-H5···O9 ^o C6-H6···O1 ^p C10-H10···O2 ^r π ··· π	0.93 0.96 0.96 Cg3Cg3 ⁱ /Å 3.8141(12) 0.86 0.86 0.85(2) 0.85(3) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	2.64 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3) 1.98(3) 2.46 2.56 2.58 2.43 Slipage 1.218	3.493(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3) 2.825(4) 3.165(4) 3.166(4) 3.238(4) 3.228(4)	143 168 168 175 128 166(4) 174(4) 132 123 128 144
5-МеОН	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8 O7-H71···O9 ⁿ C1-H1···O7 C5-H5···O9 ^o C6-H6···O1 ^p C10-H10···O2 ^r π ··· π	0.93 0.96 0.96 Cg3Cg3 ⁱ /Å 3.8141(12) 0.86 0.86 0.85(2) 0.85(3) 0.93 0.93 0.93 0.93 0.93 Cg3Cg4 ^m /Å 3.4807(18) Cg4Cg3 ^s /Å	2.34 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3) 1.98(3) 2.46 2.56 2.58 2.43 Slipage 1.218 Slipage	3.644(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3) 2.825(4) 3.165(4) 3.166(4) 3.238(4) 3.228(4)	143 168 168 175 128 166(4) 174(4) 132 123 128 144
5. МеОН	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8 O7-H71···O9 ⁿ C1-H1···O7 C5-H5···O9 ^o C6-H6···O1 ^p C10-H10···O2 ^r π ··· π π ··· π	0.93 0.96 0.96 Cg3Cg3 ⁱ /Å 3.8141(12) 0.86 0.86 0.85(2) 0.85(3) 0.93 0.	2.34 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3) 1.98(3) 2.46 2.56 2.58 2.43 Slipage 1.218 Slipage 1.076	3.644(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3) 2.825(4) 3.165(4) 3.166(4) 3.238(4) 3.228(4)	143 168 168 175 128 166(4) 174(4) 132 123 128 144
5-МеОН	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8 O7-H71···O9 ⁿ C1-H1···O7 C5-H5···O9 ^o C6-H6···O1 ^p C10-H10···O2 ^r π ··· π π ··· π N3-H3···O7 ^t	0.93 0.96 0.96 Cg3Cg3 ⁱ /Å 3.8141(12) 0.86 0.86 0.85(2) 0.85(3) 0.93 0.93 0.93 0.93 0.93 Cg3Cg4 ^m /Å 3.4807(18) Cg4Cg3 ^s /Å 3.4807(18) 0.86	2.34 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3) 1.98(3) 2.46 2.56 2.58 2.43 Slipage 1.218 Slipage 1.076 1.83	3.644(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3) 2.825(4) 3.165(4) 3.166(4) 3.238(4) 3.228(4) 2.682(4)	143 168 168 175 128 166(4) 174(4) 132 123 128 144
5·MeOH	C10-H10···Br1 ^J C14-H14a···O2 ^h C14-H14b···Br1 ^k π ··· π N3-H3···O8 ^m N3-H3···O10 ^m O6-H61···O8 O7-H71···O9 ⁿ C1-H1···O7 C5-H5···O9 ^o C6-H6···O1 ^p C10-H10···O2 ^r π ··· π π ··· π N3-H3···O7 ^t O6-H61···O7 ^u	$\begin{array}{c} 0.93 \\ 0.96 \\ 0.96 \\ Cg3 \cdots Cg3^i / \text{\AA} \\ 3.8141(12) \\ \hline 0.86 \\ 0.85(2) \\ 0.85(3) \\ 0.93 \\ 0.93 \\ 0.93 \\ 0.93 \\ 0.93 \\ 0.93 \\ Cg3 \cdots Cg4^m / \text{\AA} \\ 3.4807(18) \\ Cg4 \cdots Cg3^s / \text{\AA} \\ 3.4807(18) \\ \hline 0.86 \\ 0.84(3) \\ \end{array}$	2.64 2.55 2.75 Slippage 1.936 1.87 2.58 1.86(3) 1.98(3) 2.46 2.56 2.58 2.43 Slipage 1.218 Slipage 1.076 1.83 1.79(3)	3.644(3) 3.493(3) 3.693(2) 2.729(4) 3.175(4) 2.685(3) 2.825(4) 3.165(4) 3.165(4) 3.238(4) 3.228(4) 3.228(4) 2.682(4) 2.620(4)	143 168 168 175 128 166(4) 174(4) 132 123 128 144 144 172 171(2)

Table S7. Geometry of intermolecular hydrogen bonds (Å, °) and $\pi \cdots \pi$ interactions for compounds **3**, **4**, **5**•**MeOH** and **6**.

	C4–H4…O4	0.93	2.41	2.737(4)	100
	$C5-H5\cdots O10^{ii}$	0.93	2.46	3.208(5)	138
6	C6–H6…O2ii ⁱ	0.93	2.53	3.173(4)	126
	$C10\text{-}H10\text{-}O1^{iv}$	0.93	2.47	3.271(4)	145
	$C12-H12\cdots O9^{v}$	0.93	2.44	3.260(4)	146
	$C15-H15b\cdots O2^{v}$	0.96	2.53	2.996(5)	110
	$C16-H16b\cdotsO1^{vi}$	0.96	2.58	3.454(5)	151
	C16-H16c…O9 ^{vi}	0.96	2.49	2.849(6)	102
	$\pi \cdots \pi$	Cg3…Cg4 ^s /Å	Slipage		
		3.6237(19)	1.363		
		$Cg4\cdots Cg3^m/{ m \AA}$	Slipage		
		3.6236(19)	1.254		
1 1 h 1.	1. 6.1/0.1/0.	d1. 1. e1.	1/0 1/0	fo 1/0 2/0	°0

^a2-x,1-y,1-z; ^b-1+x,1+y,z; ^cx,1/2-y,-1/2+z; ^d1+x,-1+y,z; ^e1+x,1/2-y,1/2+z; ^f2-x,1/2+y,3/2-z; ^g2-x,-y,-z; ^h2-x,1/2+y,1/2-z; ⁱx,1/2-y,-1/2+z; ^j3-x,-y,-z; ^k3-x,-1/2+y,1/2-z; ¹2-X,1-Y,-Z; ^mx,y,-1+z; ⁿ-1+x,y,z; ^o1-x,-1/2+y,-z; ^p1-x,-1/2+y,-z; ^r-x,1/2+y,1-z; ^sx, y, 1+z; ^tx,1+y,1+z; ^ux,1+y,1+z; ^v-1+x,1+y,z; ⁱⁱ1-x,1/2+y,1-z; ⁱⁱⁱ-x,1/2+y,1-z; ⁱⁱⁱ-x,1/2+y,-z; ^v1-x,1/2+y,-z; ^{vi1+x,y,z; ^{vi1}1-x,-1/2+y,1-z}

Polymer 1 and polymorphic forms 2α , 2β , and 2γ

Fig. S1 Packing arrangement in the unit cell of 1. Hydrogen bonds between chains are shown as blue dashed lines.

Fig. S2 Packing arrangement in the unit cell of 2α . Hydrogen bonds are shown as blue dashed lines.

Fig. S3 Packing arrangement in the unit cell of 2β . Hydrogen bonds are shown as blue dashed lines.

Fig. S4 Packing arrangement in the unit cell of 2 γ . Hydrogen bonds are shown as blue dashed lines.

Fig. S5 Graphical presentation of the Hirshfeld surfaces (with mapped d_{norm} property) of 2α , 2β , and 2γ .

Fig. S6 Hirshfeld fingerprint plot with decomposition of the dominant types of intermolecular contacts in 2α , 2β , and 2γ .

3. Vapour-mediated solid-state transformation

Scheme S1 Organic solvent vapour (OSV) mediated solid-state structural transformation and humidity induced SC-SC interconversion.

(a)

(b)

Fig. S7 Experimental setup for exposing solid materials to: (a) polar organic solvent vapour; (b) nonpolar organic vapour – a glass vial of 3.3 cm height and 1.2 cm diameter was placed inside a glass bottle of 5.2 cm height and 2.3 cm diameter. Dry apparatus was assembled as quickly as possible to prevent intrusion of atmospheric moisture and then it was filled with Ar.

Fig. S8 Powder X-ray diffraction patterns of (a) 2α ; (b-f) samples obtained when crystals of 2α were exposed to CH₃CN vapour for 1 h (b), 3 h (c), 6 h (d), 7 h (e), and 9 h (f).

Fig. S9 Drawing represents the shorthest Mo···N (Å) distance in polymorphs 2α (a) and 2γ (b). Mo and N atoms from neighbouring molecules are connected by green dashed lines.

Fig. S10 Solid state UV-Vis spectra of (a) 1 and (b) 2a.

Fig. S11 Packing arrangement in the unit cell of $2w-\alpha$. Hydrogen bonds are shown as blue dashed lines.

Humidity-driven transformations

Scheme S2 Experiments involving exposure of materials to moisture.

Spectroscopic and analytical data:

 $[MoO_2(L)(H_2O)] (2w-a). Selected IR data (cm⁻¹): 1618 (C=N)_{py}, 1595 (C=N), 1332 (C-O_{phenolate}), 1224 (C-O_{izo}), 926 (MoO_2), 888 (O=Mo-O). Anal. Calcd. for C_{14}H_{13}MoN_3O_6 (415.224): C, 40.49; H, 3.16; N, 10.12\%. Found: C, 40.23 H, 3.05; N, 9.93\%. TG: calcd. for MoO_3, 34.67\%, found: 34.28\%; calcd. for H_2O, 4.34\%, found: 4.19\%.$

[MoO₂(L)(H₂O)] (2w-γ). Selected IR data (cm⁻¹): 1620 (C=N)_{py}, 1596 (C=N), 1336 (C–O_{phenolate}), 1227 (C–O_{izo}), 932 (MoO₂), 894 (O=Mo–O). Anal. Calcd. for $C_{14}H_{13}MoN_3O_6$ (415.224): C, 40.49; H, 3.16; N, 10.12%. Found: C, 40.19 H, 2.95; N, 9.87%. TG: calcd. for MoO₃, 34.67%, found: 34.33%; calcd. for H₂O, 4.34%, found: 4.15%.

 $[MoO_2(HL)(H_2O)]Cl$ (3w). Anal. Calcd. for $C_{14}H_{14}MoN_3O_6Cl$ (451.674): C, 37.22; H, 3.12; N, 9.30%. Found: C, 36.95; H, 3.19; N, 8.95%. TG: calcd. for MoO₃, 31.87%, found: 31.63%; calcd. for H₂O, 3.99%, found: 3.76%. Selected IR data (cm⁻¹): 1638 (C=N)_{py}, 1597 (C=N), 1334 (C-O_{phenolate}), 1238 (C-O_{izo}), 937 (MoO₂), 895 (O=Mo-O).

 $[MoO_2(HL)(H_2O)]Br (4w). Anal. Calcd. for C_{14}H_{14}MoN_3O_6Br (496.124): C, 33.89; H, 2.84; N, 8.46\%. Found: C, 33.51; H, 2.74; N, 8.33\%. TG: calcd. for MoO_3, 29.01\%, found: 28.82\%; calcd. for H_2O, 3.63\%, found: 3.35\%. Selected IR data (cm⁻¹): 1638 (C=N)_{py}, 1596 (C=N), 1334 (C-O_{phenolate}), 1238 (C-O_{izo}), 938 (MoO_2), 894 (O=Mo-O).$

 $[MoO_{2}(HL)(H_{2}O)]NO_{3} (5w). Anal. Calcd. for C_{14}H_{14}MoN_{4}O_{9} (478.232): C, 35.16; H, 2.95; N, 11.72\%. Found: C, 35.45; H, 2.61; N, 11.80\%. TG: calcd. for MoO_{3}, 30.10\%, found: 30.31\%; calcd. for H_{2}O, 3.77\%, found: 6.65\%. Selected IR data (cm⁻¹): 1638 (C=N)_{py}, 1594 (C=N), 1326 (C-O_{phenolate}), 1224 (C-O_{izo}), 931 (MoO_{2}), 905 (O=Mo-O).$

 $[MoO_{2}(HL)(H_{2}O)]MeOSO_{3} (6w). Anal. Calcd. for C_{15}H_{17}MoN_{3}O_{10}S (527.323): C, 34.16; H, 3.25; N, 7.97\%. Found: C, 34.04; H, 2.98; N, 8.15\%. TG: calcd. for MoO_{3}, 27.30\%, found: 27.05\%; calcd. for H_{2}O, 3.42\%, found: 3.20\%. Selected IR data (cm⁻¹): 1640 (C=N)_{py}, 1591 (C=N), 1331 (C-O_{phenolate}), 1224 (C-O_{izo}), 931 (MoO_{2}), 901 (O=Mo-O).$

4. Protonation reactions of molybdenum complexes with mineral acids

METHOD A

 $[MoO_2(acac)_2] + H_2L \xrightarrow{HX/MeOH} [MoO_2(HL)(MeOH)]X (3-5)$

METHOD B

 $[MoO_2(L)(MeOH)] \xrightarrow{HX/MeOH} [MoO_2(HL)(MeOH)]X (3-6)$

Scheme S3 Synthesis of compounds $[MoO_2(HL)(MeOH)]Cl (3), [MoO_2(HL)(MeOH)]Br (4), [MoO_2(HL)(MeOH)]NO_3 \cdot MeOH (5 \cdot MeOH) and [MoO_2(HL)(MeOH)]MeOSO_3 (6)$

Fig. S12. Photos of single crystals of 3, 4 and 5. MeOH obtained by Method A.

Fig. S13 Powder X-ray diffraction patterns of **3** (a and b); **4** (c and d), **5** (e and f), **6** (g and h). The coloured lines indicate patterns obtained by powder diffraction, CuK_{α} radiation, while the black lines indicate patterns calculated from the X-ray single-crystal structures of the corresponding compounds.

Fig. S14 ORTEP plot of [MoO₂(HL)(MeOH)]Cl (**3**), [MoO₂(HL)(MeOH)]NO₃·MeOH (**5**·MeOH) and [MoO₂(HL)(MeOH)]MeOSO₃ (**6**). Displacement ellipsoids of non-hydrogen atoms are drawn at the 50% probability level.

Fig. S15 Packing arrangement in the unit cell of 3. Hydrogen bonds are shown as blue dashed lines.

Fig. S16 Packing arrangement in the unit cell of 5·MeOH. Hydrogen bonds are shown as blue dashed lines.

Fig. S17 Packing arrangement in the unit cell of 6. Hydrogen bonds are shown as blue dashed lines.

5. Characterisation

IR spectroscopy

Fig. S18 IR spectra of $[MoO_2(HL)(MeOH)]Cl(3)$, $[MoO_2(L)(MeOH)](2\alpha)$, and $[MoO_2(L)]_n(1)$.

Thermogravimetric analysis

Fig. S19 From top to bottom: TG curves of 1, 2α , and 2γ under the O₂ atmosphere.

Fig. S20 From top to bottom: TG curves of salts 3, 4, 5 • MeOH and 6 under the O₂ atmosphere.

NMR spectroscopy

[MoO₂(L)(dmso)]: Anal. Calcd. for C₁₆H₁₇MoN₃O₆S (475.32): C, 40.43; H, 3.60; N, 8.84. Found: C, 40.21; H, 3.48; N, 9.20. TG: C₂H₆OS, 16.18 % (Calcd. 16.44 %); MoO₃, 29.89% (Calcd. 30.28%). Selected IR data (cm⁻¹): 1616 (C=N)_{py}, 1593 (C=N), 1343 (C–O_{phenolate}), 1217 (C–O_{enolate}), 920 (MoO₂), 892 (O=Mo–O). UV-Vis (EtOH): λ /nm (ε/dm³ mol⁻¹ cm⁻¹): 217 (22250), 318 (13780) and 402 (7040).

Fig. S21 Powder X-ray diffraction patterns of (a) 1 and (b) [MoO₂(L)(dmso)].

	H ₂]	L	1	1	•	3	4	4	4	5	(6
Atom	δ / ppm (¹ H)	δ / ppm (¹³ C)	δ / ppm (¹ H)	δ / ppm (¹³ C)	δ / ppm (¹ H)	δ / ppm (¹³ C)	δ / ppm (¹ H)	δ / ppm (¹³ C)	δ / ppm (¹ H)	δ / ppm (¹³ C)	δ / ppm (¹ H)	δ / ppm (¹³ C)
1	8.58	150.01	8.92	157.61	8.93	143.07	8.98	143.94	8.97	144.16	8.87	141.75
4	_	161.52	_	166.26	-	164.76	_	164.54	_	164.54	_	165.20
5	-	140.50	_	137.99	_	146.57	-	145.70	_	145.70	_	148.11
6, 10	7.84	121.92	7.85	121.87	8.21	124.01	8.30	124.66	8.29	124.23	8.13	123.57
7,9	8.80	150.83	8.76	150.99	8.98	158.62	9.01	159.28	8.99	159.28	8.97	157.97
11	-	112.16	_	113.87	_	113.93	-	113.71	-	113.49	-	114.19
12	-	159.90	_	161.98	_	162.13	_	162.35	_	162.13	_	161.91
13	6.54	101.62	6.59	103.56	6.61	103.85	6.61	103.41	6.61	103.41	6.61	103.41
14	-	162.80	_	166.16	_	166.73	-	166.73	-	166.29	-	166.51
15	6.51	107.09	6.72	110.17	7.73	110.42	7.75	110.20	7.72	110.42	7.73	110.64
16	7.49	131.47	7.68	136.28	6.74	136.71	6.74	136.49	6.75	136.71	6.72	136.93
ОН	11.42	_	_	-	_	-	-	-	-	-	-	-
NH	12.19	_	_	—	12.86	-	12.52	-	12.44	_	12.34	-
OMe	3.78	55.81	_	56.39	3.86	56.53	3.86	56.74	3.85	56.53	3.83	56.53

Table S8 ¹H and ¹³C chemical shifts (ppm) of H_2L , 1 and 3–6

Scheme S4. Structure and the NMR numbering scheme in H_2L and in the deprotonated ligand L^{2-}

Fig. S22 A portion of the ¹H NMR spectra in dmso- d_6 of: H₂L (the red line), [MoO₂(L)]_n(1) (the blue line).

Fig. S23 A portion of the ¹³C NMR spectra in dmso- d_6 of: H₂L (the red line), $[MoO_2(L)]_n(1)$ (the blue line).

	1	3	4 5	6	
Atom	δ /ppm	δ / ppm	δ / ppm	δ / ppm	δ / ppm
1	162.14	164.59	161.22	162.70	160.16
4	171.31	168.46-170.74	169.45	168.03	167.31-169.31
5	140.92-142.01	138.00-148.57	137.66-149.58	145.01-149.30	143.30-149.86
7,9	140.92-142.01	138.00-148.57	137.66-149.58	145.01-149.30	143.30-149.86
6,10	124.39-127.62	125.68-129.13	126.31-129.15	127.73	127.84-130.41
11	116.48	104.74-117.06	103.89-116.94	103.80-115.52	104.96-117.26
12	164.47	164.59	165.47	165.48	165.59
13,15	109-47-110.91	104.74-117.06	103.89-116.94	103.80-115.52	104.96-117.26
14	169.51	168-46-170.74	169.45	168.03	167.31-169.31
16	140.92-142.01	138.00-148.57	137.66-149.58	137.38	136.70-138.14
OMe	58.24	59.04, 54.50	59.321, 55,097	61.31, 54.78	59.04, 54.50

Table S9 Tentative assignment of ¹³C CP-MAS spectra

Fig. S24 ¹³C CP-MAS spectrum of 1.

Fig. S26¹³C CP-MAS spectrum of 4.

Fig. S28 13 C C P-MAS spectrum of 6.

6. Antimicrobial activity

Fig. S29 Antimicrobial activity of dioxomolybdenum(VI) compounds and antibiotic gentamicin (GEN) against Grampositive and Gram-negative bacteria by disc diffusion assay.