## Electronic Supplementary Information (ESI)

Structural, electronic and optical studies of  $BaRE_2Ge_3O_{10}$  (RE = Y, Sc, Gd–Lu) trigermanates with a special focus on the  $[Ge_3O_{10}]^{8-}$  geometry

O. A. Lipina, L. L. Surat, A. Yu. Chufarov, A. P. Tyutyunnik, A. N. Enyashin,

I. V. Baklanova, K. G. Belova, Ya. V. Baklanova and V. G. Zubkov

Table S1. The results<sup>a</sup> of quantitative energy-dispersive X-ray analyses for  $BaRE_2Ge_3O_{10}$  (*RE* = Y, Sc, Gd–Lu)

|                                                   | Mass. % of Ba |              | Mass.%     | 6 of <i>RE</i> | Mass.% of Ge |              |  |
|---------------------------------------------------|---------------|--------------|------------|----------------|--------------|--------------|--|
| Compound                                          | Calculated    | Experimental | Calculated | Experimental   | Calculated   | Experimental |  |
| BaY2Ge3O10                                        | 25.8          | 25.0±0.8     | 33.4       | 34.4±1.0       | 40.8         | 40.6±0.8     |  |
| $BaSc_2Ge_3O_{10}$                                | 30.8          | 31.0±1.1     | 20.2       | 20.0±0.4       | 49.0         | 49.0±1.4     |  |
| $BaGd_2Ge_3O_{10}\\$                              | 20.5          | 19.8±1.9     | 47.0       | 48.7±1.7       | 32.5         | 31.5±2.0     |  |
| $BaTb_2Ge_3O_{10}\\$                              | 20.4          | 19.4±1.5     | 47.2       | 48.9±1.5       | 32.4         | 31.7±1.0     |  |
| $BaDy_2Ge_3O_{10}$                                | 20.2          | 19.1±2.2     | 47.8       | 49.5±2.8       | 32.0         | 31.4±0.9     |  |
| BaHo <sub>2</sub> Ge <sub>3</sub> O <sub>10</sub> | 20.0          | 20.3±0.9     | 48.1       | 47.8±1.0       | 31.8         | 31.9±1.1     |  |
| $BaEr_2Ge_3O_{10}$                                | 19.9          | 19.3±0.7     | 48.5       | 51.5±2.6       | 31.6         | 29.2±2.8     |  |
| BaTm <sub>2</sub> Ge <sub>3</sub> O <sub>10</sub> | 19.8          | 21.1±1.9     | 48.8       | 49.2±2.5       | 31.4         | 29.7±2.6     |  |
| BaYb2Ge3O10                                       | 19.6          | 21.5±1.8     | 49.4       | 48.7±2.2       | 31.1         | 29.8±2.1     |  |
| BaLu <sub>2</sub> Ge <sub>3</sub> O <sub>10</sub> | 19.5          | 20.0±1.4     | 49.6       | 48.9±1.7       | 30.9         | 31.1±1.4     |  |

<sup>a</sup> Random errors of direct measurements shown in the table were determined according to the formulas:

 $\Delta a_r = t_{St} \cdot S(\bar{a})$ 

and

$$S(\overline{a}) = \sqrt{\frac{\sum_{i=1}^{n} (a_i - \overline{a})^2}{n \cdot (n-1)}}$$

where  $\bar{a}$  is an arithmetic mean value of all measurement results,

n = 5 is amount of measurements,

 $t_{\text{St}} = 2.776$  is the Student's coefficient (n = 5 and  $\alpha = 0.95$ ).

|                              |            |                       | Cd                     | Th                     | Du                      | Цо                | V                      |
|------------------------------|------------|-----------------------|------------------------|------------------------|-------------------------|-------------------|------------------------|
| Do                           | 2.         | ~                     | 0.7675(4)              | 0.7680(4)              | 0.7666(2)               | 0.7655(1)         | 0.7652(1)              |
| Da                           | 20         | x                     | 0.7075(4)              | 0.7089(4)              | 0.7000(3)               | 0.7055(1)         | 0.7032(1)              |
|                              |            | y<br>z                | 0.23<br>0.0117(3)      | 0.23<br>0.0127(3)      | 0.23<br>0.0130(2)       | 0.23<br>0.0138(1) | 0.23<br>0.0135(1)      |
|                              |            | 4<br>U. ×100          | 3.00                   | 2.46(0)                | 2.40                    | 1.76              | 0.0135(1)              |
| RF                           | Λf         | $U_{iso} \wedge 100$  | 0.1503(4)              | 2.40(9)<br>0.1551(3)   | 2.49<br>0.1545(2)       | 1.70<br>0.1531(1) | 2.02<br>0.1531(1)      |
| ΚĽ                           | 4)         | x                     | 0.1393(4)<br>0.0001(1) | 0.1331(3)<br>0.1000(1) | 0.1343(2)<br>0.10018(7) | 0.10083(5)        | 0.1331(1)<br>0.1008(5) |
|                              |            | у<br>-                | 0.0331(1)<br>0.6705(2) | 0.1000(1)<br>0.6782(2) | 0.10010(7)              | 0.10083(3)        | 0.10088(3)             |
|                              |            | ζ<br>11 ×100          | 0.0793(2)              | 0.0763(2)              | 0.0700(1)               | 0.07021(9)        | 0.07399(9)             |
| $\mathbf{C}_{\mathbf{a}}(1)$ | 2.         | U <sub>iso</sub> ×100 | 2.40                   | 2.38(7)                | 2.30                    | 2.05              | 2.30                   |
| Ge(1)                        | 20         | X                     | 0.3802(9)              | 0.3649(6)              | 0.3829(3)               | 0.3799(3)         | 0.3606(2)              |
|                              |            | <i>y</i>              | 0.23                   | 0.23                   | 0.23                    | 0.23              | 0.23                   |
|                              |            | z                     | 0.4700(7)              | 0.4/33(0)              | 0.4759(4)               | 0.4759(2)         | 0.4703(2)              |
| $C_{-}(2)$                   | 1.0        | U <sub>iso</sub> ×100 | 2.70                   | 2.00(13)               | 2.15                    | 1.01              | 2.30                   |
| Ge(2)                        | 4 <i>J</i> | X                     | 0.3020(0)              | 0.3038(5)              | 0.3059(4)               | 0.3040(2)         | 0.5040(2)              |
|                              |            | У                     | 0.0548(2)              | 0.0531(2)              | 0.0534(1)               | 0.05289(7)        | 0.05294(6)             |
|                              |            | Z                     | 0.2019(4)              | 0.2012(4)              | 0.2014(3)               | 0.2020(1)         | 0.2012(1)              |
| O(1)                         | 2          | $U_{iso} \times 100$  | 2.78                   | 2.27(11)               | 2.57                    | 1.62              | 2.44                   |
| O(1)                         | 2e         | x                     | 0.361(3)               | 0.3503(31)             | 0.3468(19)              | 0.3414(12)        | 0.3428(10)             |
|                              |            | У                     | 0.25                   | 0.250000               | 0.25                    | 0.25              | 0.25                   |
|                              |            | Z                     | 0.6003(21)             | 0.6038(23)             | 0.5975(13)              | 0.5923(8)         | 0.5919(7)              |
|                              |            | $U_{iso} \times 100$  | 2.2(7)                 | $2.71(20)^{a}$         | 0.59(33)                | 1.49(20)          | 2.49(16)               |
| O(2)                         | 2e         | x                     | 0.895(4)               | 0.9035(39)             | 0.8838(25)              | 0.8804(13)        | 0.8/9/(10)             |
|                              |            | У                     | 0.25                   | 0.250000               | 0.25                    | 0.25              | 0.25                   |
|                              |            | Z                     | 0.6402(27)             | 0.6510(27)             | 0.6466(17)              | 0.6394(9)         | 0.6409(8)              |
|                              |            | $U_{iso} \times 100$  | 3.1(8)                 | $2.71(20)^{a}$         | 2.43(45)                | 1.19(21)          | 1.42(16)               |
| O(3)                         | 4f         | x                     | 0.5740(23)             | 0.5683(22)             | 0.5840(13)              | 0.5722(8)         | 0.5673(7)              |
|                              |            | У                     | 0.1385(10)             | 0.1364(9)              | 0.1366(6)               | 0.1382(3)         | 0.1380(3)              |
|                              |            | Z                     | 0.3152(18)             | 0.3216(18)             | 0.3145(11)              | 0.3166(6)         | 0.3160(6)              |
|                              |            | $U_{iso} \times 100$  | 2.8(5)                 | 2.71(20) <sup>a</sup>  | 2.27(26)                | 1.83(14)          | 2.52(11)               |
| O(4)                         | 4f         | x                     | 0.4303(21)             | 0.4276(21)             | 0.4348(13)              | 0.4411(8)         | 0.4437(7)              |
|                              |            | У                     | -0.0715(11)            | -0.0692(10)            | -0.0731(6)              | -0.0695(3)        | -0.0698(3)             |
|                              |            | Z.                    | 0.1713(20)             | 0.1761(18)             | 0.1763(11)              | 0.1775(6)         | 0.1809(6)              |
|                              |            | $U_{iso} \times 100$  | 2.9(5)                 | 2.71(20) <sup>a</sup>  | 1.98(30)                | 2.03(16)          | 2.59(12)               |
| O(5)                         | 4f         | x                     | 0.1308(20)             | 0.1610(21)             | 0.1323(14)              | 0.1312(8)         | 0.1335(7)              |
|                              |            | У                     | 0.1225(10)             | 0.1267(10)             | 0.1211(7)               | 0.1186(3)         | 0.1193(3)              |
|                              |            | Z                     | -0.0187(19)            | -0.0091(19)            | -0.0160(11)             | -0.0134(6)        | -0.0160(6)             |
|                              |            | $U_{iso} \times 100$  | 1.2(4)                 | 2.71(20) <sup>a</sup>  | 2.08(27)                | 1.16(13)          | 2.35(11)               |
| O(6)                         | 4f         | x                     | 0.1115(24)             | 0.0974(24)             | 0.1164(15)              | 0.1142(9)         | 0.1168(8)              |
|                              |            | У                     | 0.0450(10)             | 0.0471(10)             | 0.0428(6)               | 0.0428(3)         | 0.0407(3)              |
|                              |            | z                     | 0.3651(17)             | 0.3652(18)             | 0.3662(11)              | 0.3616(6)         | 0.3605(6)              |
|                              |            | $U_{iso} \times 100$  | 1.8(4)                 | 2.71(20) <sup>a</sup>  | 1.43(26)                | 1.44(14)          | 2.36(11)               |

Table S2. Atomic coordinates and thermal parameters ( $U_{iso} \times 100$ , Å<sup>2</sup>) for BaRE<sub>2</sub>Ge<sub>3</sub>O<sub>10</sub> (RE = Y, Gd–Ho)

<sup>a</sup> The thermal vibration parameters of oxygen atoms have been constrained as a single variable.

|       |    |                      | Er         | Tm         | Yb         | Lu          | Sc         |
|-------|----|----------------------|------------|------------|------------|-------------|------------|
| Ва    | 2e | x                    | 0.7649(2)  | 0.7671(2)  | 0.7664(1)  | 0.7656(3)   | 0.7744(1)  |
|       |    | у                    | 0.25       | 0.25       | 0.25       | 0.25        | 0.25       |
|       |    | z                    | 0.0148(1)  | 0.0161(1)  | 0.0169(1)  | 0.0173(2)   | 0.0304(1)  |
|       |    | $U_{iso} \times 100$ | 1.90       | 2.53       | 2.92       | 2.49        | 2.48       |
| RE    | 4f | x                    | 0.1514(1)  | 0.1502(1)  | 0.14936(9) | 0.1477(2)   | 0.1420(3)  |
|       |    | у                    | 0.10127(5) | 0.10157(4) | 0.10185(3) | 0.10212(7)  | 0.1039(1)  |
|       |    | z                    | 0.67552(9) | 0.67465(8) | 0.67390(7) | 0.6733(1)   | 0.6684(3)  |
|       |    | $U_{iso} \times 100$ | 1.79       | 2.37       | 2.70       | 2.16        | 2.17       |
| Ge(1) | 2e | x                    | 0.5789(3)  | 0.5781(3)  | 0.5771(3)  | 0.5757(5)   | 0.5658(3)  |
|       |    | у                    | 0.25       | 0.25       | 0.25       | 0.25        | 0.25       |
|       |    | z                    | 0.4759(2)  | 0.4759(2)  | 0.4762(2)  | 0.4764(4)   | 0.4799(3)  |
|       |    | $U_{iso} \times 100$ | 1.69       | 2.29       | 2.61       | 2.09        | 2.18       |
| Ge(2) | 4f | x                    | 0.3037(2)  | 0.3045(2)  | 0.3037(2)  | 0.3041(4)   | 0.3009(2)  |
|       |    | У                    | 0.05200(9) | 0.05142(8) | 0.05090(7) | 0.0504(2)   | 0.04452(7) |
|       |    | z                    | 0.2013(2)  | 0.2007(2)  | 0.2008(1)  | 0.2011(3)   | 0.1999(2)  |
|       |    | $U_{iso} \times 100$ | 1.78       | 2.37       | 2.73       | 2.36        | 2.26       |
| O(1)  | 2e | x                    | 0.3380(15) | 0.3328(14) | 0.3337(11) | 0.3333(24)  | 0.3029(12) |
|       |    | У                    | 0.25       | 0.25       | 0.25       | 0.25        | 0.25       |
|       |    | z                    | 0.5928(10) | 0.5904(9)  | 0.5878(8)  | 0.5911(16)  | 0.5715(10) |
|       |    | $U_{iso} \times 100$ | 1.69(25)   | 2.01(23)   | 2.47(20)   | 1.66(40)    | 2.22(20)   |
| O(2)  | 2e | x                    | 0.8877(17) | 0.8827(16) | 0.8808(11) | 0.8831(28)  | 0.8793(12) |
|       |    | У                    | 0.25       | 0.25       | 0.25       | 0.25        | 0.25       |
|       |    | z                    | 0.6487(12) | 0.6456(11) | 0.6471(8)  | 0.6450(21)  | 0.6486(10) |
|       |    | $U_{iso} \times 100$ | 1.59(26)   | 1.63(23)   | 1.36(18)   | 2.43(45)    | 1.82(19)   |
| O(3)  | 4f | x                    | 0.5715(10) | 0.5679(9)  | 0.5689(8)  | 0.5714(18)  | 0.5593(8)  |
|       |    | У                    | 0.1386(4)  | 0.1371(4)  | 0.1387(3)  | 0.1414(8)   | 0.1371(4)  |
|       |    | Z                    | 0.3160(8)  | 0.3163(7)  | 0.3182(6)  | 0.3166(13)  | 0.3115(7)  |
|       |    | $U_{iso} \times 100$ | 1.83(17)   | 2.18(16)   | 2.64(14)   | 2.89(31)    | 2.08(15)   |
| O(4)  | 4f | x                    | 0.4487(10) | 0.4477(10) | 0.4541(8)  | 0.4559(19)  | 0.4702(10) |
|       |    | У                    | -0.0704(4) | -0.0716(4) | -0.0709(3) | -0.0710(7)  | -0.0774(3) |
|       |    | z                    | 0.1839(8)  | 0.1836(8)  | 0.1822(6)  | 0.1848(15)  | 0.1960(8)  |
|       |    | $U_{iso} \times 100$ | 1.58(18)   | 2.23(18)   | 2.58(15)   | 3.24(34)    | 2.14(15)   |
| O(5)  | 4f | x                    | 0.1319(11) | 0.1371(10) | 0.1311(8)  | 0.1327(16)  | 0.1184(8)  |
|       |    | У                    | 0.1167(5)  | 0.1182(4)  | 0.1149(4)  | 0.1151(8)   | 0.1084(4)  |
|       |    | z                    | -0.0185(8) | -0.0198(7) | -0.0219(6) | -0.0208(13) | -0.0305(8) |
|       |    | $U_{iso} \times 100$ | 1.81(17)   | 1.69(15)   | 2.82(13)   | 1.89(27)    | 2.09(15)   |
| O(6)  | 4f | x                    | 0.1206(11) | 0.1153(10) | 0.1166(8)  | 0.1170(18)  | 0.1067(9)  |
|       |    | У                    | 0.0412(4)  | 0.0382(4)  | 0.0401(3)  | 0.0380(7)   | 0.0360(4)  |
|       |    | Ζ.                   | 0.3652(8)  | 0.3605(8)  | 0.3652(6)  | 0.3637(12)  | 0.3684(8)  |
|       |    | $U_{iso} \times 100$ | 1.03(17)   | 1.96(16)   | 2.29(14)   | 1.21(28)    | 2.43(14)   |

Table S3. Atomic coordinates and thermal parameters ( $U_{iso} \times 100$ , Å<sup>2</sup>) for BaRE<sub>2</sub>Ge<sub>3</sub>O<sub>10</sub> (RE = Sc, Er–Lu)

|       |                     | Gd        | Tb         | Dy         | Но        | Y          |
|-------|---------------------|-----------|------------|------------|-----------|------------|
| Ba    | $U_{11} \times 100$ | 2.87(28)  | 1.55(22)   | 2.67(14)   | 1.96(6)   | 2.58(5)    |
|       | $U_{22} \times 100$ | 2.64(28)  | 2.14(22)   | 2.30(12)   | 1.67(5)   | 2.72(4)    |
|       | $U_{33} \times 100$ | 3.62(27)  | 3.55(22)   | 2.50(12)   | 1.68(5)   | 2.53(4)    |
|       | $U_{12} 	imes 100$  | 0         | 0          | 0          | 0         | 0          |
|       | $U_{13} 	imes 100$  | 1.03(16)  | 0.69(15)   | 0.86(9)    | 0.62(4)   | 0.85(4)    |
|       | $U_{23} 	imes 100$  | 0         | 0          | 0          | 0         | 0          |
| RE    | $U_{11} \times 100$ | 2.66(21)  | 2.36(14)   | 2.37(8)    | 1.91(5)   | 2.41(4)    |
|       | $U_{22} \times 100$ | 2.47(20)  | 2.48(12)   | 2.50(7)    | 2.11(4)   | 2.41(4)    |
|       | $U_{33} \times 100$ | 2.33(21)  | 3.13(14)   | 2.25(7)    | 2.06(4)   | 2.15(4)    |
|       | $U_{12} \times 100$ | -0.36(11) | 0.15(11)   | -0.12(7)   | -0.09(4)  | -0.16(4)   |
|       | $U_{13} \times 100$ | 0.86(10)  | 1.25(10)   | 0.85(6)    | 0.71(4)   | 0.853(34)  |
|       | $U_{23} 	imes 100$  | -0.25(10) | 0.26(10)   | -0.07(6)   | -0.04(4)  | -0.051(33) |
| Ge(1) | $U_{11} \times 100$ | 1.50(39)  | 1.16(36)   | 1.28(21)   | 1.30(10)  | 2.26(8)    |
|       | $U_{22} \times 100$ | 3.13(39)  | 2.31(33)   | 2.16(20)   | 1.68(10)  | 2.18(8)    |
|       | $U_{33} \times 100$ | 3.13(37)  | 2.82(34)   | 2.76(20)   | 1.76(10)  | 2.57(8)    |
|       | $U_{12} \times 100$ | 0         | 0          | 0          | 0         | 0          |
|       | $U_{13} \times 100$ | 0.53(28)  | 0.19(27)   | 0.67(17)   | 0.46(8)   | 0.80(6)    |
|       | $U_{23} 	imes 100$  | 0         | 0          | 0          | 0         | 0          |
| Ge(2) | $U_{11} \times 100$ | 2.55(32)  | 2.03(27)   | 2.89(17)   | 1.60(8)   | 2.42(6)    |
|       | $U_{22} \times 100$ | 2.84(27)  | 2.68(21)   | 2.29(13)   | 1.81(6)   | 2.49(5)    |
|       | $U_{33} \times 100$ | 2.84(30)  | 2.57(25)   | 2.56(15)   | 1.42(7)   | 2.36(5)    |
|       | $U_{12} \times 100$ | -0.40(19) | -0.34(17)  | -0.04(11)  | -0.02(6)  | -0.03(5)   |
|       | $U_{13} \times 100$ | 0.83(20)  | 0.94(20)   | 0.94(13)   | 0.47(6)   | 0.75(5)    |
|       | $U_{23} \times 100$ | -0.06(18) | -0.13(17)  | 0.13(11)   | -0.07(6)  | -0.01(5)   |
|       |                     | Er        | Tm         | Yb         | Lu        | Sc         |
| Ba    | $U_{11} \times 100$ | 1.92(8)   | 2.52(8)    | 3.05(6)    | 2.68(13)  | 2.63(8)    |
|       | $U_{22} \times 100$ | 1.89(8)   | 2.78(7)    | 2.90(6)    | 2.54(13)  | 2.50(8)    |
|       | $U_{33} \times 100$ | 1.90(7)   | 2.40(7)    | 2.90(6)    | 2.41(12)  | 2.41(8)    |
|       | $U_{12} \times 100$ | 0         | 0          | 0          | 0         | 0          |
|       | $U_{13} \times 100$ | 0.68(6)   | 1.05(5)    | 1.19(4)    | 1.10(9)   | 1.04(5)    |
|       | $U_{23} \times 100$ | 0         | 0          | 0          | 0         | 0          |
| RE    | $U_{11} \times 100$ | 1.85(5)   | 2.44(4)    | 2.721(29)  | 2.26(7)   | 2.44(12)   |
|       | $U_{22} \times 100$ | 1.74(5)   | 2.42(4)    | 2.627(27)  | 2.15(7)   | 2.00(11)   |
|       | $U_{33} \times 100$ | 1.75(5)   | 2.20(4)    | 2.720(28)  | 2.03(6)   | 1.99(12)   |
|       | $U_{12} \times 100$ | -0.33(4)  | -0.245(34) | -0.103(27) | -0.08(6)  | -0.46(8)   |
|       | $U_{13} \times 100$ | 0.57(4)   | 0.724(33)  | 0.926(21)  | 0.69(5)   | 0.63(9)    |
|       | $U_{23} \times 100$ | -0.11(4)  | -0.070(32) | -0.101(25) | -0.05(5)  | 0.07(8)    |
| Ge(1) | $U_{11} \times 100$ | 1.67(12)  | 2.02(11)   | 2.70(9)    | 1.90(19)  | 2.09(11)   |
|       | $U_{22} \times 100$ | 1.90(12)  | 2.79(12)   | 2.47(9)    | 2.40(19)  | 1.92(11)   |
|       | $U_{33} \times 100$ | 1.43(12)  | 1.93(11)   | 2.70(9)    | 1.83(19)  | 2.41(11)   |
|       | $U_{12} \times 100$ | 0         | 0          | 0          | 0         | 0          |
|       | $U_{13} \times 100$ | 0.43(9)   | 0.50(8)    | 1.03(7)    | 0.46(15)  | 0.73(8)    |
|       | $U_{23} \times 100$ |           | 0          |            |           |            |
| Ge(2) | $U_{11} \times 100$ | 1.78(10)  | 2.18(9)    | 2.50(7)    | 2.08(15)  | 2.20(9)    |
|       | $U_{22} \times 100$ | 1.63(8)   | 2.31(8)    | 2.44(6)    | 2.03(13)  | 2.28(8)    |
|       | $U_{33} \times 100$ | 1.76(9)   | 2.46(9)    | 2.92(7)    | 2.73(15)  | 2.25(9)    |
|       | $U_{12} \times 100$ | -0.17(7)  | 0.02(6)    | -0.07(5)   | -0.26(11) | 0.14(6)    |
|       | $U_{13} \times 100$ | 0.38(8)   | 0.64(7)    | 0.51(6)    | 0.63(12)  | 0.78(6)    |
|       | $U_{23} \times 100$ | -0.22(6)  | 0.06(6)    | -0.19(5)   | -0.37(10) | 0.01(6)    |

Table S4. Anisotropic thermal parameters<sup>a</sup> (U×100, Å<sup>2</sup>) of metal atoms for Ba $RE_2$ Ge<sub>3</sub>O<sub>10</sub>

<sup>a</sup> Anisotropic thermal factors are defined by T =  $e \left[-2\pi^2(u_{11}h^2a^{*2}+\ldots+2u_{12}hka^*b^*+\ldots)\right]$ 

Table **S5**. The bond–valence sums (BVS) for the cations and oxygen anions, and global instability indexes (*GII*) for  $BaRE_2Ge_3O_{10}$  (RE = Y, Sc, Gd–Lu)

|       |                         | Gu    |           | ID    |           | Dy    |           | Но    |           | Y     |           |
|-------|-------------------------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|-------|-----------|
| Atom  | Assumed oxidation state | BVS   | %<br>dev. |
| Ba    | +2                      | 2.079 | 4         | 1.861 | 7         | 2.155 | 8         | 1.986 | 1         | 1.952 | 2         |
| RE    | +3                      | 2.977 | 1         | 3.135 | 4         | 2.889 | 4         | 3.087 | 3         | 3.010 | 0         |
| Ge(1) | +4                      | 3.743 | 6         | 3.537 | 12        | 3.618 | 10        | 3.921 | 2         | 3.926 | 2         |
| Ge(2) | +4                      | 3.516 | 12        | 3.784 | 5         | 3.600 | 10        | 3.909 | 2         | 3.927 | 2         |
| O(1)  | -2                      | 2.013 | 1         | 1.939 | 3         | 1.974 | 1         | 2.081 | 4         | 2.066 | 3         |
| O(2)  | -2                      | 1.869 | 7         | 1.863 | 7         | 1.919 | 4         | 2.020 | 1         | 2.010 | 0         |
| O(3)  | -2                      | 1.849 | 8         | 1.948 | 3         | 1.784 | 11        | 1.942 | 3         | 1.950 | 3         |
| O(4)  | -2                      | 1.838 | 8         | 1.962 | 2         | 1.852 | 7         | 1.971 | 1         | 1.930 | 4         |
| O(5)  | -2                      | 1.879 | 6         | 1.957 | 2         | 1.889 | 6         | 1.979 | 1         | 1.947 | 3         |
| O(6)  | -2                      | 1.897 | 5         | 1.85  | 7         | 1.904 | 5         | 2.007 | 0         | 2.011 | 1         |
| GII   |                         | 0.20  |           | 0.19  |           | 0.21  |           | 0.06  |           | 0.05  |           |
|       |                         | Er    |           | Tm    |           | Yb    |           | Lu    |           | Sc    |           |
| Atom  | Assumed oxidation state | BVS   | %<br>dev. |
| Ba    | +2                      | 1.945 | 3         | 1.947 | 3         | 1.947 | 3         | 1.955 | 2         | 2.123 | 6         |
| RE    | +3                      | 2.974 | 1         | 2.884 | 4         | 2.956 | 1         | 3.053 | 2         | 2.808 | 6         |
| Ge(1) | +4                      | 3.750 | 6         | 3.776 | 6         | 3.990 | 0         | 4.044 | 1         | 3.982 | 0         |
| Ge(2) | +4                      | 3.844 | 4         | 3.901 | 2         | 3.811 | 5         | 3.811 | 5         | 3.864 | 3         |
| O(1)  | -2                      | 1.998 | 0         | 1.958 | 2         | 2.013 | 1         | 2.039 | 2         | 1.994 | 0         |
| O(2)  | -2                      | 1.899 | 5         | 1.925 | 4         | 1.944 | 3         | 1.976 | 1         | 1.937 | 3         |
| O(3)  | -2                      | 1.919 | 4         | 1.960 | 1         | 1.982 | 1         | 1.985 | 1         | 2.074 | 4         |
| O(4)  | -2                      | 1.912 | 4         | 1.894 | 5         | 1.902 | 5         | 1.934 | 3         | 1.902 | 5         |
| O(5)  | -2                      | 1.924 | 4         | 1.916 | 4         | 1.934 | 3         | 1.948 | 3         | 1.914 | 4         |
| O(6)  | -2                      | 1.962 | 2         | 1.935 | 3         | 1.939 | 3         | 1.989 | 1         | 1.869 | 7         |
| GII   |                         | 0.11  |           | 0.10  |           | 0.08  |           | 0.07  |           | 0.11  |           |

| Compound                                          | Lattice type                                      | Lattice parameters in Å or °                                                    | $\Delta E$ , eV/st.unit | BG, eV |
|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|-------------------------|--------|
|                                                   | BaY2Ge3O10                                        | a = 5.64, b = 12.45, c = 7.01,<br>$\beta = 104.9$                               | ±0.0000                 | 3.4    |
| Day Ca O                                          | CaY2Ge3O10                                        | a = 7.00, b = 7.08, c = 19.23,<br>$\alpha = 89.4, \beta = 104.2, \gamma = 88.7$ | +0.4232                 | 3.1    |
| Ba I 2003010                                      | CaLa <sub>2</sub> Ge <sub>3</sub> O <sub>10</sub> | a = 7.05, b = 20.71, c = 7.14,<br>$\beta = 114.6$                               | +0.5797                 | 3.2    |
|                                                   | $SrY_2Si_3O_{10}$                                 | a = 7.07, b = 7.15, c = 9.76,<br>$\alpha = 71.0, \beta = 86.9, \gamma = 87.8$   | +0.0680                 | 3.5    |
|                                                   | BaY2Ge3O10                                        | a = 5.81, b = 12.13, c = 7.27,<br>$\beta = 104.5$                               | +0.6933                 | 3.0    |
| BaLa <sub>2</sub> Ge <sub>3</sub> O <sub>10</sub> | CaY2Ge3O10                                        | a = 7.19, b = 7.21, c = 19.47,<br>$\alpha = 91.1, \beta = 106.0, \gamma = 90.5$ | +0.5762                 | 3.1    |
|                                                   | CaLa2Ge3O10                                       | a = 7.02, b = 21.00, c = 7.26,<br>$\beta = 115.9$                               | +0.5559                 | 3.2    |
|                                                   | $SrY_2Si_3O_{10}$                                 | a = 7.11, b = 7.11, c = 9.80,<br>$\alpha = 71.6, \beta = 87.2, \gamma = 90.4$   | ±0.0000                 | 3.1    |

Table S6. Theoretical lattice parameters, relative energies  $\Delta E$  and band gap BG for representative set of BaY<sub>2</sub>Ge<sub>3</sub>O<sub>10</sub> and BaLa<sub>2</sub>Ge<sub>3</sub>O<sub>10</sub> polymorphic modifications. DFT calculations.

| Gd         | Tb                | Dy                | Y                 | Но                | Er                | Tm                | Yb                       | Lu                       | Sc                | Assignment              |
|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------|--------------------------|-------------------|-------------------------|
| 836        | 838               | 843               | 848               | 846               | 848               | 849               | 851                      | 852                      | 857               | v <sub>as</sub> Ge-O-Ge |
| 805        | 810               | 808               | 812               | 812               | 814               | 816               | 819                      | 822                      | 823               | $v_s  GeO_3$            |
| 735        | 776<br>743<br>729 | 780<br>747<br>727 | 782<br>752<br>727 | 782<br>751<br>727 | 783<br>753<br>727 | 786<br>755<br>724 | 785<br>758<br>715        | 791<br>757<br>722        | 768<br>713        | $\nu_{as}~GeO_3$        |
| 511        | 515               | 515               | 517               | 519               | 519               | 521               | 523                      | 522                      | 536               | v <sub>s</sub> Ge-O-Ge  |
| 466<br>437 | 467<br>439        | 471               | 462               | 477<br>443<br>414 | 482<br>444<br>415 | 480<br>418        | 488<br>475<br>449<br>420 | 492<br>475<br>450<br>426 | 488<br>469<br>447 | δ O-Ge-O                |

Table S7. IR wavenumbers (cm<sup>-1</sup>) for the  $BaRE_2Ge_3O_{10}$ 

Table **S8**. Raman wavenumbers (cm<sup>-1</sup>) for the  $BaRE_2Ge_3O_{10}$ 

|     | D   | NZ. | T   | \$71 | т   | <b>A</b> • (           |
|-----|-----|-----|-----|------|-----|------------------------|
| 1b  | Dy  | Y   | Im  | Yb   | Lu  | Assignment             |
| 828 | 829 | 829 | 830 | 831  | 833 | $v_s  GeO_3$           |
| 787 | 787 | 790 | 791 | 793  | 796 |                        |
| 765 | 768 | 770 | 771 | 775  | 763 | vas GeO3               |
| 742 | 743 | 757 | 750 | 761  | 754 |                        |
| 505 | 505 | 506 | 509 | 511  | 512 | v <sub>s</sub> Ge-O-Ge |
|     |     | 458 |     |      | 454 |                        |
| 432 | 429 | 431 | 430 | 433  | 432 | $S \cap C_2 \cap$      |
|     |     | 389 | 374 | 389  | 391 | 00-06-0                |
| 366 | 368 | 366 |     | 371  | 373 |                        |



**Fig. S1** The typical SEM image of  $BaSc_2Ge_3O_{10}$  powder (a), the particle size distribution histogram with a log-normal distribution fit (b) and the spectrum of  $BaSc_2Ge_3O_{10}$  acquired at 20 kV (c).



**Fig. S2** Simultaneous thermal analysis of the BaYb<sub>2</sub>Ge<sub>3</sub>O<sub>10</sub>: solid lines - TG and DSC, dashed lines - ion currents of gases.



**Fig. S3** Simultaneous thermal analysis of the  $BaY_2Ge_3O_{10}$ : solid lines - TG and DSC, dashed lines - ion currents of gases.



**Fig. S4** Simultaneous thermal analysis of the BaGd<sub>2</sub>Ge<sub>3</sub>O<sub>10</sub>: solid lines - TG and DSC, dashed lines - ion currents of gases.



**Fig. S5** Diffuse reflectance spectra of  $BaRE_2Ge_3O_{10}$  (*RE* = Gd, Tb, Yb)



**Fig. S6** Diffuse reflectance spectra of  $BaRE_2Ge_3O_{10}$  (*RE* = Y, Sc, Lu)