Supporting Information

Weak intermolecular interactions directed assembly of

calix[4]arene derivatives

Zufeng Xiao,^a Weiping Yang,^b Jia Luo,^c Rong Guo,^d Rong Zeng,^d Lingbo Ji,^b Wei Li,^{a,*} and Wei Wang^{a,*}

^a School of Chemistry and Material Science, Hubei Engineering University, Xiaogan Hubei 430000, PR China

^b Key Laboratory of Tobacco Flavor Basic Research, Zhengzhou Tobacco Research Institute of CNTC, 450001 Zhengzhou, Henan, PR China

^c College of Life Science and Technology, Hubei Engineering University, Xiaogan Hubei 430000, PR China

^{*d*} Wuhan Institute of Industrial holding Technology. Hubei 430000, PR China Author Contributions

Zufeng Xiao,^a Weiping Yang^b contributed equally.

* Corresponding Author: Wei Li, E-mail: weili@hbeu.edu.cn; Fax: +86 0712 2345464

* Corresponding Author: Wei Wang, E-mail: 15327403696@163.com; Fax: +86 0712 2345464;

Contents

General synthetic procedure for calix[4]arene derivatives

Scheme S1 Syntheses of the seven compounds.

Suppupporting figure

Figure S1 The intermolecular C–H···O and O··· π interactions in compound 16. Figure S2 The intermolecular C–H··· π interactions and π ··· π found in compound 17. Figure S3 C–H··· π interactions in compound 18 Figure S4 One-dimensional wave structure was formed in compound 19 Figure S5 Molecules staggered in compound 21. Figure S6 The intermolecular C–H···Cl and O··· π interactions in compound 22

Suppupporting table

Table S1 Dihedral angles of aromatic rings and reference molecular plane R of the seven compounds.

Table S2 Dihedral angles of the opposite aromatic rings of the seven compounds

Table S3 $\pi \cdots \pi$ interactions in compounds 16, 17 and 22

Table S4 O··· π interactions in compounds **16**, **17** and **22**

Table S5 Hydrogen bonds of five compounds

TableS6 C-H··· π interactions of five compounds

Scheme S1 Syntheses of the seven compounds.

Synthesis of 1,3-alternate calix[4]arene derivatives 23^a, 24^b and 25^b

Compound CA (1.0 g, 2.35 mmol) in **40** mL of dry pyridine was treated with benzoyl chloride (0.56 mL,24mmol) in the presence of Cs_2CO_3 (15.34 g, 47.1 mmol). After reacting carried out at room temperature, the reaction system was evaporated to dryness under reduced pressure, and 40 mL of chloroform was added. Then 1 mol/L of HCl was slowly added and the pH was adjusted to neutral. The organic layer was washed with water and dried over MgSO₄ and the residue using petroleum ether / dichloromethane (100:1- 40:1) as a gradient eluent to give a white powder solid **23** (1,22g, 83%).

Compound CA (1.0 g, 2.35 mmol) in **40** mL of dry acetone was treated with Iodon-propane (4.8 mL,24mmol) in the presence of Cs_2CO_3 (15.34 g, 47.1 mmol). After reacting carried out at reflux temperature. Other procedures of preparing **24** were similar to **23**. The residue was purified by column chromatography to give **24** (0.73 g, 50%).

The procedures of preparing 25 were similar to 24. The yield of the obtained compound was 53%.

23: ¹H NMR (300 MHz, DMSO): *δ* (ppm) 3.48(d, 4H, *J* = 12Hz, ArC*H*₂Ar), 3.94(d, 4H, *J* = 12Hz, ArC*H*₂Ar), 6.77(t, 2H, *J* = 7.2Hz, Ar*H*), 6.81-6.97 (m, 6H, Ar*H*), 7.09-7.42 (m, 6H, Ar*H*), 8.33 (d, 4H, *J* = 7.2Hz, Ar*H*). ESI-MS: *m*/*z* = 655[M+Na]⁺

24: ¹HNMR (300 MHz, CDCl₃,): δ (ppm) 0.92(t, 12H, J = 7.5Hz, CH_3), 1.59-1.70(m, 8H, CH₂CH₂CH₃), 3.53(t, 8H, J = 7.2Hz, CH_2 CH₂CH₃), 3.61 (s, 8H, ArCH₂Ar), 6.67 (t, 4H, J = 7.5 Hz, ArH). ESI-MS: m/z = 591 [M-H]⁻.

25: ¹HNMR (300 MHz, CDCl₃): δ (ppm) 1.21(d, 24H, J = 6.0Hz, CH_3), 3.61(s, 8H, ArCH₂Ar), 4.14(hept, 4H, J = 6.0Hz, OCHMe₂), 6.61(t, 4H, J = 7.2Hz, ArH), 7.01(d, 8H, J = 7.2 Hz, ArH). ESI-MS: m/z = 591 [M-H]⁻

Synthesis of 1,3-alternate calix[4]arene derivatives 17,^c 18,^b 19,^d 20^b and 22^b

A mixture of calixarene **23** (0.47 g, 0.74 mmol), hexamethylenetetramine (3.84 g, 20.19 mmol), and trifluoroacetic acid (20 mL) was stirred at reflux for 48 h. Then the mixture was poured into 30 mL of ice-water and extracted with chloroform. The chloroform solution was washed with water and dried over MgSO₄, and then filtered and concentrated under vacuum. The residue was purified using petroleum ether /

dichloromethane (40:1-10:1) as a gradient eluent to give 17 (0.40 g, 80%)

The procedures of preparing **18-20** and **22** were similar to **17** except that the reaction time.

18 (reaction time: 48h, yield: 42%),

19 (reaction time: 24h, yield: 18%),

20 (reaction time: 24h, yield: 23%),

22 (reaction time: 96h, yield: 11%),

17: ¹H NMR (300 MHz, CDCl₃): δ (ppm) 9.68 (s, 2H, CHO), 8.26 (d, 4H, J = 7.2 Hz, ArH), 7.77 (t, 2H, J = 6.9 Hz, ArH), 7.59 (s, 4H, ArH), 7.55 (t, 4H, J = 7.5 Hz, ArH), 6.95-7.02 (m, 6H, ArH), 6.19 (s, 2H, ArOH), 4.01 (d, 4H, J = 14.7 Hz, ArCH2Ar), 3.69 (d, 4H, J = 14.7 Hz, ArCH₂Ar). ESI-MS: m/z 687 [M-H]⁻

18: ¹H NMR (CDCl₃, 300 MHz): 9.69 (s, 4H, CHO), 7.53 (s, 8H, ArH), 4.42 (hept, 4H, J = 6.0 Hz OCHMe2), 3.74 (s, 8H, ArCH2Ar), 1.33 (d, 24H, J = 6.0 Hz, CH3).

¹³C NMR (CDCl₃, 75 MHz): d 191.5 (CHO), 159.2, 134.3, 131.4,130.5 (Ar), 74.9 (OCHMe2),
35.7 (ArCH2Ar), 22.5 (CH3). ESI-MS m/z: 727 [M+Na]⁺

19: 1HNMR (CDCl3, 300 MHz): δ (ppm) 0.92-1.25 (m, 24H, CH3), 3.65-3.75(m, 8H, J = 12.7 Hz, ArCH2Ar), 4.21-4.40(m, 4H, OCHMe2), 6.64(d, 4H, J = 7.5Hz, ArH), 6.82(d, 2H, J= 7.5Hz, ArH), 7.53(s, 4H, ArH), 9.80(s, 2H, CHO). ESI-MS: m/z= 671 [M+Na]+

20: ¹HNMR (300MHz, CDCl₃): δ (ppm) 1.29-1.36(m, 24H, CH₃), 3.59(d, 2H, J = 15.4Hz, ArCH₂Ar), 3.66 (d, 2H, J = 15.4Hz, ArCH₂Ar), 3.69(s, 4H, ArCH₂Ar), 4.21-4.45(m, 4H, OCHMe₂), 6.54(t, 1H, J = 7.5Hz, ArH), 6.97(d, 2H, J = 7.5 Hz, ArH), 7.51(s, 2H, ArH), 7.55(s, 2H, ArH), 7.59(s, 2H, ArH), 9.68(s, 2H, CHO), 9.83(s, 1H, CHO). ESI-MS: m/z = 699 [M+Na]⁺ **22**: ¹H NMR (CDCl₃, 300 MHz): d 9.93 (s, 2H, CHO), 9.81 (s, 2H, CHO), 8.10 (s, 2H, ArOH), 7.73 (s, 4H, ArH), 7.64 (s, 2H, ArH), 7.61 (s, 2H, ArH), 4.40-4.52 (m, 2H, OCHMe2), 4.14 (s, 2H, ArCH2Ar), 4.07 (d, 2H, J = 15.3 Hz, ArCH2Ar), 3.92 (d, 2H, J = 15.3 Hz, ArCH2Ar), 3.83 (s, 2H, ArCH2Ar), 0.97 (d, 6H, J = 6.0 Hz, CH3), 0.92 (d, 6H, J = 6.0 Hz, CH₃).

¹³C NMR (CDCl3, 75 MHz): d 190.5, 190.3 (CHO), 157.0, 156.9, 134.5, 133.2, 132.0, 131.4,
130.3, 129.7, 128.1, 127.3 (Ar), 74.2 (OCHMe2), 39.1, 34.9, 31.2 (ArCH2Ar), 21.4, 20.8 (CH₃).
ESI-MS m/z: 643 [M+Na]+.

Synthesis calix[4]arene derivatives 16^d

An aqueous solution of 0.1mmol compound **17**, 5 mL of NaOH (20%) was added to 20 mL of methanol and heated to reflux overnight. After the completion of the reaction, the solvent was distilled off under reduced pressure, and 1 mol/L HCl was added until no precipitate was formed. After filtration, the solid **17** was washed with

water, and the product was quantitatively obtained.

¹H NMR (300 MHz, CDCl₃): δ (ppm) 10.18 (s, 4H, ArOH), 9.74 (s, 2H,CHO), 7.61 (s, 4H, ArH), 7.14 (d, 4H, J = 7.2 Hz, ArH), 6.81 (t, 2H, J = 7.5 Hz, ArH), 3.51-4.40 (m, 8H, ArCH₂Ar). ESI-MS: m/z 479 [M-H]⁻..

Synthesis calix[4] arene derivatives 21^{c,e}

0.2 g (0.28 mmol) compound **26** and 28 mmol NH₂OH were added to 20 mL acetonitrile. After reflux for 5 days, intermediate product extracted with dichloromethane and dried. The obtained solid was added to 5 mL acetic acid and refluxed for one night. After the reaction was completed, a large amount of water was added. Then the mixture was poured into 30 mL of ice-water and extracted with chloroform. The chloroform solution was washed with water and dried over MgSO₄, and then filtered and concentrated under vacuum. The residue was purified by column chromatography to give **21**(0.11g, 56%).

¹HNMR (300 MHz, CDCl₃): δ (ppm) 1.12(t, J = 7.4Hz, 6H, CH3), 1.99(m, 4H, CH2), 4.21(t, J = 6.6Hz, 4H, ArOCH2), 6.65(t, J = 7.7Hz, 4H, ArH), 7.05 (d, J= 7.8Hz, 4H, ArH), 7.87(s, 4H, ArH), 8.43 (s, 2H, ArOH). ESI-MS: m/z = 629 [M–H]⁻

Ref:(a) Magrans J O, de Mendoza J, Pons M, et al. Are 1, 3-Di-O-benzoylcalix [4] arenes an Exception to the 13C-NMR Rule for Conformational Determination?[J]. The Journal of organic chemistry, 1997, 62(13): 4518-4520.

(b) Yang W, Guo R, Wang W, et al. Tetrahedron Letters, 2012, 53(17): 2167-2170.

(c) Wei Wang. Nanotubes assembly based on Calixarenes by Intermolecular Forces. [D]. Wuhan University. 2015. 40-52

(d) Weiping Yang. The Influences of Substituents on the Formylations of Calixarenes on the Upper Rims and the Constructions of Calixarene-based Nanotubes [D]. Wuhan University. 2012. 79-83

(e) W. Wang, W. Yang, R. Guo and S. Gong, CrystEngComm, 2015, 17, 7663-7675

Figure S1 (A)C-H···O interactions was found in a wave structure of 16. (B) The intermolecular $O \cdot \pi$ interactions was found in compound 16. (The intermolecular $\pi \cdot \cdot \cdot \pi$, C-H···O and O··· π interactions are red, green and grey dot lines, respectively).

Figure S2 (A) Wave arrangement structure of 17 was formed in the presence of the C-H···O interactions and π ··· π stacking. (B) The C-O··· π interactions was observed in compound 17.(The intermolecular C-O··· π interactions is red dot lines)

Figure S3 (A) The intermolecular C-H $\cdots \pi$ interactions was observed in crystal**18**. (B) Spacefilling representation of the extended structure was observed in compound **18** in the presence of weak bonds. (The intermolecular C-H $\cdots \pi$ interactions is purple dot lines)

Figure S4 One-dimensional wave structure in compound 19

Figure S5 (A) Compounds 21 packs staggered in the crystal. (B) Space-filling representation of the extended structure in the compound 21 were formed by weak molecular forces.

Figure S6 (A) One-dimensional wave structure of **22** was formed through C–H···O interactions. (**B**) The intermolecular C–H··· π interactions was observed in the single crystal structure of **22**. (The intermolecular C–H···O and C-H··· π interactions are green and violet dot lines)

Compound	Plane AR (°)	Plane BR (°)	Plane CR (°)	Plane DR (°)
16	125.88(3)	128.60(4)	125.54(8)	123.29(3)
17 ^a	93.82(2)	75.80(3)	95.68(6)	78.91(5)
	(95.10(4))	(84.43(3))	(97.83(7))	(80.58(9))
18 ^b	88.05(2) ^a /88.29(4) ^b /89.29(2) ^c	82.61(3) ^b		
19	71.75(5)	77.64(2)		
20	71.81(4)	72.21(5)	76.65((3)	73.75(3)
21	100.31(3)	106.18(6)	104.79(5)	97.12(3)
22	110.71(3)	109.05(4)	111.87(4)	138.33(6)

Table S1 Dihedral angles of aromatic rings and reference molecular plane R of the seven compounds

a. There are two types of molecules in compound 17.

b. There are three types of molecules in compound **18**.

TIL COD'L	11	C 11	· · · · · · · · · · · · · · · · · · ·	1
I able SZ Dine	arai angles	of the opposite	aromatic rings of i	ine seven compolinds
I dole of Dille	arar angles	or the opposite	aronnane migo or i	ine beven compounds

Compound	Plane AC (°)	Plane BD (°)
16	71.54(9)	71.80(6)
17ª	8.73(3)	26.47(8)
	(14.61(5))	(13.09(3))
18 ^b	13.05(2) ^a /9.35(4) ^b /5.66(6) ^c	13.64(7) ^b
19	34.52(3)	29.81(5)
20	36.25(9)	29.44(9)
21	25.49(7)	23.30(4)
22	42.58(2)	29.73(7)

a There are two types of molecules in compound 17.

b There are three types of molecules in compound 18.

Compound	Cg(I)···Cg	g(J)	Symmetry	α	Cg···Cg	Cg(J)Perp	Cg(J)Perp		
16 ^a	Cg(1)····C	g(4)	-1/4+Y,5/4-X,5/4-Z	2.25(7)	3.609(2)	-3.4969(14)	3.4632(16)		
	Cg(2)…C	g(3)	-1/4+Y,5/4-X,9/4-Z	2.93(4)	3.5850(19)	-3.3770(13)	3.3760(12)		
17 ^b .	Cg(1)…C	g(9)	-1/2+X,1/2-Y,2-Z	11.94(9)	3.9560(18)	3.1353(12)	-3.5379(12)		
	Cg(3)…C	g(7)	1/2+X,1/2-Y,2-Z	10.60(6)	3.7971(17)	-3.2843(12)	3.5787(12)		
	Cg(11)	Cg(12)	1/2+X,Y,3/2-Z	0.29(8)	3.820(2)	3.5925(15)	3.5984(16)		
a.6-Membered Ring (Cg) Cg(1):		Cg(1):	C(1)- C(6), Cg(2): C(8)- C(13), Cg(3): C(15)- C(20)						
		Cg(4):	C(22)- C(27)						
b. 6-Membere	d Ring (Cg)	Cg(1):	C(45)- C(50), Cg(3):	C(60)- C(6	65), Cg(7): C	(1) - C(6)			
		Cg(9):	C(16)- C(21), Cg(11):	: C(32)- C	C(37), Cg(12):	C(39)- C(44)			

Table S3 $\pi \cdots \pi$ interactions for five compounds

Table S4 $\mathrm{O}^{\ldots}\pi$ interactions in compounds 16, 17 and 22

Compound	$C - O \cdots Cg$	<i>r/</i> Å		d∕Å	<i>α</i> (°)	$\varphi(^{\circ})$
16 ^a	$C(30) - O(5) \cdots Cg(2)$	4.169(16)	C(13)	3.552(12)	60.89(7)	54.30(6)
	$C(9)-O(2)\cdots Cg(3)$	4.268(9)	C(15) -C(16)	3.666(7)	58.32(3)	52.82(8)
17 ^b	C(9)-O(2)····Cg(3) C(50)-O(9)····Cg(9)	4.268(9) 4.173(6)	C(15) -C(16) C(20)	3.666(7) 3.617(11)	58.32(3) 66.53(4)	52.82(8) 57.76(3)
17 ^b	C(9)-O(2)····Cg(3) C(50)-O(9)····Cg(9) C(61)-O(13)····Cg(7)	4.268(9) 4.173(6) 3.954(7)	C(15) -C(16) C(20) C(1)	3.666(7) 3.617(11) 3.562(6)	58.32(3) 66.53(4) 68.30(4)	52.82(8) 57.76(3) 64.81(4)

b. 6-Membered Ring (Cg) Cg(7): C(1)- C(6), Cg(9): C(16)- C(21)

c. 6-Membered Ring (Cg) Cg(1): C(1)- C(6)

 Table S5 Hydrogen bonds of five compounds

Compound	D–H····A(Å)	H····A (Å)	D····A (Å)	<(D-H···A)(°)
16	O(1)–H(1A)····O(3) ^a	1.89(2)	2.669(4)	143(7)
	$O(2)-H(2)\cdots O(1)^{a}$	1.87(5)	2.672(4)	170(6)
	$O(3)$ - $H(3A)$ ···· $O(4)^a$	1.88(3)	2.676(4)	163(8)
	$O(4)-H(4)\cdots O(2)^{a}$	1.85(5)	2.664(3)	176(1)
	$C(16)-H(16)\cdots O(5)^{b}$	2.54(3)	3.440(4)	164(3)
	C(18)–H(18)····O(6) ^b	2.60(2)	3.491(5)	166(5)
17	$O(9)-H(9)\cdots O(6)^{b}$	2.48(7)	3.070(3)	130(3)
	O(13)–H(13A)····O(2) ^b	2.35(6)	2.930(43	129(6)
	$C(5)-H(5)\cdots O(10)^{b}$	2.58(6)	3.474(8)	162(5)
	$C(5)-H(5)\cdots O(10')^{b}$	2.47(3)	3.331(8)	154(7)
	$C(6)-H(6)\cdots O(16)^{b}$	2.40(5)	3.282(4)	158(6)
	C(7)–H(7B)····O(16) ^b	2.60(2)	3.507(3)	156(3)
	C(18)–H(18)····O(14) ^b	2.39(4)	3.261(7)	155(5)
	$C(42)-H(42)\cdots O(9)^{b}$	2.52(3)	3.408(4)	161(8)
	C(58)–H(58)····O(6) ^b	2.54(9)	3.370(4)	148(4)
	C(67)–H(67A)····O(2) ^b	2.58(3)	3.424(4)	145(\$)
	C(73)–H(73)····O(2) ^b	2.56(4)	3.352(4)	143(3)
	C(78)–H(78)····O(7) ^b	2.72(7)	3.558(4)	151(7)
18	$C(1A)-H(1A)\cdots O(1A)^b$	2.53(3)	3.430(9)	159(6)
	$C(1B)$ - $H(1B)$ ···· $O(1C)^b$	2.56(2)	3.474(9)	162(9)
	C(1C)- $H(1C)$ ···O(1B) ^b	2.44(1)	3.313(8)	152(5)
	C(7D)-H(7DB)····O(1C) ^a	2.50(3)	3.443(8)	160(3)
	$C(7B)$ - $H(7BA)$ ···· $O(1A)^b$	2.69(6)	3.531(7)	143(5)
	$C(7D)$ - $H(7DB)$ ···· $O(1C)^b$	2.50(2)	3.637(2)	160(5)
	C(11B)–H(11E)····O(1B)	2.61(6)	3.452(2)	145(9)
	C(1D)-H(1D)···O(1D)	2.74(7)	3.267(8)	158(4)
21	$C(2)-H(2)\cdots N(3)^{b}$	2.69(5)	3.585(4)	163(7)
	C(13)-H(13)····N(1) ^b	2.69(3)	3.601(3)	166(2)
	C(26)–H(26)····N(1) ^b	2.62(5)	3.508(5)	160(5)
	C(37)–H(37)····N(3) ^b	2.83(5)	3.639(3)	146(4)
	C(39)–H(39)····N(2) ^b	2.70(8)	3.427(5)	158(4)
	C(15)-H(15)····N(4) ^b	2.58(4)	3.472(5)	160(7)
	$C(24)-H(24)\cdots N(4)^{b}$	2.50(5)	3.418(5)	170(6)
22	$C(37)$ – $O(6)$ ···· $Cl(2)^b$		3.027(9)	145(6)
	$C(35)$ – $H(35B)$ ···· $Cl(1)^b$	2.79(3)	3.693(5)	156(4)
	$O(5)-H(5)\cdots O(7)^{a}$	1.97(3)	2.756(5)	161(8)
	$O(7)-H(7)\cdots O(1)^{a}$	1.86(5)	2.657(4)	162(9)
	C(14)–H(14)····O(6) ^b	2.56(8)	3.416(7)	146(2)
	C(35)–H(35B)····O(5) ^b	2.79(6)	3.693(12)	156(3)
	C(39)–H(39A)····O(5) ^b	2.37(6)	3.212(18)	145(3)
	C(32)–H(32)····O(3) ^b	2.66(3)	3.570(2)	166(4)

C(27)–H(27)····O(2) ^b	2.72(8)	3.414(7)	133(2)	
C(18)–H(18)····O(2) ^b	2.68(5)	3.595(8)	169(8)	
C(28)–H(28)····O(6) ^b	2.62(5)	3.438(2)	142(3)	

a represents intramolecular hydrogen bonding.

b represents intermolecular hydrogen bonding

Table S6 C-H··· π interactions for five compounds

Compound	Atoms involved CH…Cg	Symmetry	$H{\cdots}Cg$	$C{\cdots}Cg$	<ch···cg< th=""></ch···cg<>
17ª	C(15) -H(15A)····Cg(10)	1/2-X, 1/2+Y, Z	3.14(9)	3.876(10)	134(3)
	C(71) -H(17)····Cg(8)	-X,1-Y,2-Z	3.41(7)	4.017(8)	125(5)
	C(52) -H(52A)····Cg(9)	1/2+X,Y,5/2-Z	3.23(8)	3.80(6)	129(5)
18 ^b	C(11D) -H(11R)····Cg(2)	2-Y,X,-Z	2.91(6)	3.745(7)	144(7)
19°	C(17) -H(17)····Cg(1)	1/2+X, 1/2+Y,Z	3.30(5)	4.07(11)	142(4)
20 ^d	$C(7) - H(7A) \cdots Cg(4)$	1/2+X,1/2-Y, -Z	3.15(3)	3.84(6)	133(3)
21 ^e	C(10) -H(10B)····Cg(4)	1/2-X,1/2-Y, -Z	3.22(5)	4.03(9)	144(8)
22 ^f	C(21) -H(21B)····Cg(4)	1/2-X, 3/2-Y, -Z	2.82(6)	3.512(5)	129(3)
	C(31) -H(31B)····Cg(4)	1/2-X,1/2+Y,1/2-Z	2.85(8)	3.755(7)	158(2)
a. 6-Membered Ri	ng (Cg) Cg(8): C(8)- C(1)	3), Cg(9): C(16)- C(21),	Cg(10): C	C(23)- C(28),	
b. 6-Membered Ri	ng (Cg) Cg(2): C(2C)- C(4C)			
c 6-Membered Rin	ng (Cg) Cg(1): C(1)- C(6)				
d. 6-Membered Ri	ng (Cg) Cg(4): C(22)- C(27)			
e. 6-Membered Ri	ng (Cg) Cg(4): C(34)-C(34)	9)			
f 6-Membered Rin	rag(Cg) Cg(4): C(22)- C(27)			