Supporting Information

Phase and morphology evolution of luminescent NaLnF₄ (Ln= La to Yb) microcrystals: Understanding the Ionic radii and surface energy dependent solution growth mechanism

Xinwen Sun, ^{a,§} XinWei Wang,^{b,§} Bing Chen,^c FeiYu Zhao, ^a Xiuxia Xu, ^a Kai Ren,^a

Yunhao Lu, ^b Xvsheng Qiao,^{a,*} Guodong Qian,^a and Xianping Fan,^{a,*}

^aState Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China ^bDepartment of Physics, Zhejiang University, Hangzhou 310027, China

^cCity University of Hong Kong Shenzhen Research InstituteShenzhen 518057 (China)

Figure S1. SEM images of lanthanide fluoride MCs NaLnF₄ (Ln: Yb- Sm).

Figure S2. The amplification peak of (110) and (101) of $NaLnF_4$ (Ln: Yb-Dy).

Figure S3. Schematic diagram showing the anisotropy of the $NaLnF_4$ (Ln= La to Yb)

Structures.

Figure S5. FT-IR spectra for Na₃Cit and before and after (a) NaYbF₄, (b) NaGdF₄, (c) LaF₃, (d) NaEuF₄, (e) NaTbF₄ and (f) NaHoF₄ samples

Figure S6. PL excitation and emission spectra of Na₃Cit

	$E_{s-(001)} (eV/Å^2)$	$E_{s-(100)} \left(eV/{\AA^2} \right)$	$E_{s}(eV)$	$E_{f}(eV)$
NaSmF ₄ - 2F	0.007	0.041	6.112	33.00
NaYbF ₄ - 2F	0.054	0.036	9.764	26.11

Table S1. The surface energy and the formation energy of $NaSmF_4$ and $NaYbF_4$.

Ln ³⁺	^{1*} R _{ionic} (CN6)	$^{2*}R_{ionic}(CN8)$	$^{3*}R_{ionic}(CN9)$	^{4*} R _{ionic} (CN11)
La ³⁺	1.032	1.160	1.126	1.360
Ce^{3+}	1.01	1.143	1.196	1.340
Pr^{3+}	0.99	1.126	1.179	
Nd ³⁺	0.983	1.109	1.163	1.27
Pm^{3+}	0.97	1.093	1.144	
Sm^{3+}	0.958	1.079	1.132	1.24
Eu^{3+}	0.947	1.066	1.120	
Gd^{3+}	0.938	1.053	1.107	
Tb^{3+}	0.923	1.040	1.095	
Dy ³⁺	0.912	1.027	1.083	
Ho ³⁺	0.901	1.015	1.072	
Er^{3+}	0.890	1.004	1.062	
Tm^{3+}	0.880	0.994	1.052	
Yb ³⁺	0.868	0.985	1.042	
Lu^{3+}	0.861	0.977	1.032	
Na ⁺	1.02	1.118	1.24	

Table S2 Ionic radii (Å) of Ln³⁺ and Na⁺

1*. ionic radius of lanthanide at 6 coordination (Shannon)

2*.ionic radius of lanthanide at 8 coordination (Shannon)

3*. ionic radius of lanthanide at 9 coordination (Shannon)

4*. ionic radius of lanthanide at 11 coordination (Shannon)

Ln-based fluoride	(110)FWHM(°)
LaF ₃	0.34
CeF ₃	0.34
PrF ₃	0.35
NdF ₃	0.36
NaSmF ₄	0.37
NaEuF ₄	0.36
NaGdF ₄	0.36
NaTbF ₄	0.34
NaDyF ₄	0.23
NaHoF ₄	0.25
NaErF ₄	0.24
NaTmF ₄	0.21
NaYbF ₄	0.18

Table S3 (110) FWHM ($^{\circ}$) of XRD peaks assigned to NaLnF₄ (110) plane

Supplementary Note-surface and absorption models

All the first-principles calculations have been carried out based on density functional theory (DFT) using the Vienna *ab initio* simulation package (VASP) ^[1,2] within the Perdew-Burke-Ernzerh of generalized gradient approximation (PBE-GGA) exchange-correlation potential ^[3]. Ionic potentials were treated by the projector-augmented wave (PAW) pseudo potential method ^[4,5]. The kinetic energy cutoff was set to 400 eV. The convergence criteria for the electronic energy and the geometry relaxation were set to 10^{-4} eV and 0.02 eV/Å, respectively. In the case of slabs, the vacuum space of at least 15 Å was set to avoid spurious interactions between two neighboring sheets. Monkhorst-Pack k-point sampling ^{[6} was used with $5 \times 5 \times 3$ grid meshes for bulk structures, and $5 \times 5 \times 1$ grid meshes for slabs. The Grimme's method (DFT-D3) ^[7] was employed to incorporate the effects of van der Waals interactions. Atoms with purple, green, blue and brown colors represent sodium, fluorine, samarium and ytterbium atoms, respectively.

The surface energy (E_S) is defined as:

$$E_s = (E_{\text{slab}} - N \times E_{\text{bulk}} - 2 \times \frac{1}{2} \times E_{F_2}) \times \frac{1}{2S}$$

where E_{bulk} is the energy per unit of NaREF₄, E_{slab} and E_{F2} represent the total energy of the slab structure and the isolated F₂, respectively. *N* is the number of unit NaREF₄ contained in the slab model.

The formation energy (E_f) is calculated by:

$$E_f = E_{\text{bulk}} - E_{\text{Na}} - E_{\text{RE}} - 4 \times E_{\text{F}}$$

where E_{bulk} , E_{Na} , E_{RE} and E_{F} represent the total energy of the bulk NaLnF₄(Ln=Yb,Sm), the isolated Na, Ln and F atom, respectively.

Supplementary References

- 1 G. Kresse and J. Furthmiiller, Computational Materials Science, 1996, 6, 15-50
- 2 G. Kresse and J. Furthmiiller, *Physical Review B*, 1996, 54, 11169-11186.
- 3 J.P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, 77, 3865-3868.
- 4 P. E. Blochl, *Physical Review B*, 1994, **50**, 7953-17979.

- 5 G. Kresse and D Joubert, *Physical Review B*, 1999, **59**, 1758-1775.
- 6 H.J. Monkhorst and J. D. Pack, *Physical Review B*, 1977, 16, 1746-1747.
- 7 S. Grimme, S. Ehrlich, L. Goerigk, J Comput Chem, 2011, 32, 1456-1465.