Supplementary information

A Bifunctional 3D **Tb-based** Metal–Organic Framework for Sensing and Removal of Antibiotics in Aqueous Medium

Table. S1Selected bond lengths/Å and bond angles/° for complex (1).					
Complex 1					
Tb1-O1	2.408(2)	Tb1-O2 ¹	2.380(2)	Tb1-O6 ³	2.364(2)
Tb1-O1 ¹	2.668(2)	Tb1-O5 ²	2.327(2)	Tb1-O8 ⁴	2.252(2)
Tb1-O9 ⁵	2.303(2)	Tb1-O10	2.434(2)		
O1-Tb1-Tb1 ¹	40.84(5)	O5 ² -Tb1-O2 ¹	83.69(8)	O63-Tb1-O21	96.17(9)
O1-Tb1-O11	77.02(7)	O5 ² -Tb1-O6 ³	136.35(8)	O6 ³⁻ Tb1-O10	151.09(8)
O1-Tb1-O10	133.03(8)	O5 ² -Tb1-O10	71.51(8)	O63-Tb1-C11	85.49(9)
O21-Tb1-O1	127.69(7)	O6 ³ -Tb1-O1 ¹	75.53(8)	O84-Tb1-Tb11	122.87(5)
O2 ¹ -Tb1-O1 ¹	51.01(7)	O6 ³ -Tb1-O1	73.27(7)	O84Tb1-O1	82.15(7)
O21-Tb1-O10	76.92(9)	O84-Tb1-O10	74.65(9)	O84-Tb1-O11	158.77(7)
O5 ² -Tb1-O1	72.76(8)	O9 ⁵ -Tb1-O1 ¹	116.02(7)	O84-Tb1-O21	148.72(8)
O5 ² -Tb1-O1 ¹	70.78(7)	O9 ⁵ -Tb1-O1	141.21(8)	O95-Tb1-O52	145.25(8)
O84-Tb1-O52	99.27(8)	O95-Tb1-O21	77.58(8)	O9 ⁵ -Tb1-O6 ³	75.25(8)
O8 ⁴ -Tb1-O6 ³	102.40(8)	O10-Tb1-Tb1 ¹	136.25(6)	O9 ⁵ -Tb1-O10	75.85(9)
O84-Tb1-O95	83.06(7)	O10-Tb1-O11	117.41(8)		
Symmetry codes: ^A -X,-Y,-Z; ^B 1-X,-1+Y,1/2-Z; ^C -1+X,1-Y,-1/2+Z; ^D +X,-1+Y,+Z; ^E -X,-1+Y,1/2-Z.					

Jie Zhang, ^a Lingling Gao, ^a Yang Wang, ^a Lijun, Zhai, ^a Xiaoyan Niu, ^a and Tuoping Hu*^a

Fig.S1 The coordinated mode of Tb-MOF.

Fig. S2. PXRD patterns of Tb-MOF.

Fig. S4. The chemical stability of Tb-MOF after immersing in water for different time.

Fig. S7. The solid-state fluorescence spectrum of H₃TCPB ligand.

Fig. S8. The exaction spectra of H₃TCPB ligand and Tb-MOF.

Fig. S9. The optical image of fingerprint under the UV-vis (245nm)

Fig. S10. The relative luminescent intensity (I₀/I) versus the NFT (a) and NZF (b) concentration,

Fig. S11. The results of Tb-MOF for sensing NZF after three continuous cycles.

Fig. S12. The results of Tb-MOF for sensing NFT after three continuous cycles.

Fig. S13. The PXRD of Tb-MOF after immersing NFs.

Fig. S14.The IR patterns of pure NZF, NFT, as-synthesized Tb-MOF and the Tb-MOF after immerging in NFT/NZF.

Fig. S15. Regeneration of Tb-MOF for NFT and NZF adsorption.

Fig. S16. N₂ adsorption/desorption isotherms of Tb-MOF at 77 K after the removal experiment.