Electronic Supplementary Information (ESI)

Microfluidics-enabled Rational Design for Ag-ZnO Nanocomposite Films

for Enhanced Photoelectrochemical Performance

Ho Young Jun,^a Chih-Hung Chang,^b Kwang-Soon Ahn, ^a Si Ok Ryu, ^{*,a} Chang-Ho Choi^{*,c}

a Department of Chemical Engineering, Youngnam University, 280, Daehak-ro, Gyeongsan-si,

Gyeongsangbuk-do, South Korea

b School of Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States

c Department of Chemical Engineering, Gyeongsang National University, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, South Korea

E-mail: <u>ch_choi@gnu.ac.kr</u>, soryu@ynu.ac.kr

Section 1. Estimation of residence time distribution (RTD) of reactant streams in micro-T-mixer

Figure S1. Residence time distribution (RTD) of the reactant streams in the individual micro-T-mixers.

The dimension of the T-mixer was provided by the T-mixer supplier, IDEX Health & Science LLC. The RTD was then estimated by dividing the volume of the reactor by the flow rate.

Section 2. XRD spectra of the pristine ZnO films

Figure S2. XRD spectrum of (a) pristine flower ZnO film and (b) ZnO NR array film (*: Si substrate).

Section 3. Thickness measurement of Ag-ZnO flower-like film and Ag-ZnO NR film prepared on Si/SiO₂ and FTO glass substrate

Figure S3. Thickness measurement of Ag-ZnO flower-like film and Ag-ZnO NR film prepared on Si/SiO₂ and FTO glass substrate.

The nanocomposite films were deposited for 6 min. and 14 min. on Si/SiO₂ substrate and FTO glass substrate, respectively.

Section 4. Bandgap energy of the pristine ZnO films and the nanocomposite films.

Figure S4. Bandgap energy of (a) Ag-ZnO NR film, (b) Ag-ZnO flower-like film, (c) pristine flower ZnO film and (d) pristine ZnO NR array film.