Supporting Information For

A pyrazine core based luminescent Zr(IV) organic framework for specific sensing of Fe³⁺, picric acid and Cr₂O₇²⁻

Chiranjib Gogoi,[†]*Helge Reinsch*,[‡] and Shyam Biswas*,[†]

[†] Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India.

[‡]Institut für Anorganische Chemie, Christian-Albrechts-Universität, Max-Eyth-Strasse 2, 24118 Kiel, Germany

* To whom correspondence should be addressed. E-mail: sbiswas@iitg.ernet.in; Tel: 91-3612583309.

Materials and Physical Methods. The 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine) (H₄L) ligand was synthesized by using previously reported procedure.¹ All other chemicals were purchased from chemical suppliers and used without any further purification. The Bruker D2 Phaser X-ray diffractometer was employed for X-ray powder diffraction (XRPD) measurements at 30 kV, 10 mA using Cu-K α (λ = 1.5406 Å) radiation. The Fourier transform infrared (FT-IR) spectra were taken on a Perkin Elmer Spectrum Two FT-IR spectrometer with samples prepared on KBr pellets in the range of 4000-500 cm⁻¹. The characteristic peaks were mentioned using notation like very strong (vs), strong (s), medium (m), shoulder (sh), broad (br) and weak (w). Thermogravimetric analyses (TGA) of 1 and 1' were carried out by using a SDT Q600 V20.9 Build 20 thermogravimetric analyzer from the temperature range 25 to 700 °C at a heating rate of 10 °C min⁻¹ under argon atmosphere. The Brunauer-Emmett-Teller (BET) measurement of 1' were recorded on a Quantachrome Autosorb iQ-MP volumetric gas adsorption equipment at -196 °C. The CO₂ gas adsorption experiment were carried out using Quantachrome iSorb-HP1 gas sorption analyzer at 0 °C and also at 25 °C. Prior to N₂ and CO₂ adsorption experiments, 1' was degassed under dynamic vacuum condition for 6 h at 120 °C. The Zeiss (Gemini) SEM equipment and the Hitachi S3400N SEM-EDX instrument were used for the field emission-scanning electron microscopy (FE-SEM) images and the energy dispersive X-ray (EDX) experiment respectively. The fluorescence lifetime measurement was performed using Edinburgh Instrument Life-Spec II spectrometer. During lifetime measurement, the samples were excited at 295 nm and maintaining the emission wavelength at 410 nm. Caution! *NAEs like PA*, 4-NP are highly explosive so should be handled very carefully and also used in small amounts.

Figure S1. FE-SEM images of 1.

Figure S2. FT-IR spectra of H₄L ligand (green), compound 1 (red) and 1' (black).

Sample	Compound 1	Compound 1'
Crystal system	orthorhombic	orthorhombic
Space group	Cmmm	Cmmm
<i>a /</i> Å	19.375(12)	19.492(12)
<i>b</i> / Å	33.376(21)	33.489(20)
<i>c</i> / Å	12.712(12)	12.608(7)
$\alpha = \beta = \gamma / ^{\circ}$	90	90
V/ Å ³	8220(10)	8230(8)
R _{wp} / %	3.5	4.9
GoF	3.0	2.0

Table 1. Structural refinement parameters for compound 1 and 1' obtained from Pawley fits.

Figure S3. TG curves of **1** and **1'** recorded in an argon atmosphere in the temperature range of 25-700 °C with a heating rate of 10 °C/min.

Figure S4. XRPD patterns of **1'** in different forms: (a) activated; (b) after treatment with water; (c) after treatment with methanol; (d) 5 cycles of fluorescence titration experiments with Fe³⁺ ions; (e) after 5 cycles of fluorescence titration experiments with PA; (f) after BET analysis; (g) after CO₂ adsorption; (h) after treatment with acetone; (i) after treatment with acetic acid; (j) after treatment with 1(M) HCl; (k) after treatment with ethanol; (l) after 5 cycles of fluorescence titration experiments with Cr₂O₇²⁻ ions: (m) after treatment with 1(M) NaOH.

Figure S5. N₂ sorption isotherms of 1' at -196 °C.

Figure S6. CO₂ sorption isotherms of 1' at 0 °C and 25 °C.

Figure S7. Fluorescence emission spectra of 1' in water and common organic solvents ($\lambda_{ex} = 295 \text{ nm}$).

Figure S8. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of PA in water (250 μ L).

Figure S9. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Al^{3+} in water.

Figure S10. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Cd^{2+} in water.

Figure S11. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Co^{2+} in water.

Figure S12. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Cr^{3+} in water.

Figure S13. Luminescence quenching of 1' dispersed in water after gradual addition of 10 mM solution of Cu^{2+} in water.

Figure S14. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Fe^{2+} in water.

Figure S15. Luminescence quenching of 1' dispersed in water after gradual addition of 10 mM solution of Hg^{2+} in water.

Figure S16. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of K⁺ in water.

Figure S17. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Mn^{2+} in water.

Figure S18. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Na⁺ in water.

Figure S19. Luminescence quenching of 1' dispersed in water after gradual addition of 10 mM solution of Ni^{2+} in water.

Figure S20. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Pb^{2+} in water.

Figure S21. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Zn^{2+} in water.

Figure S22. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Al^{3+} in water (500 µL) in presence of 10 mM solution of Fe^{3+} in water (500 µL).

Figure S23. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Cd^{2+} in water (500 µL) in presence of 10 mM solution of Fe³⁺ in water (500 µL).

Figure S24. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Co^{2+} in water (500 µL) in presence of 10 mM solution of Fe³⁺ in water (500 µL).

Figure S25. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Cr^{3+} in water (500 µL) in presence of 10 mM solution of Fe^{3+} in water (500 µL).

Figure S26. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Cu^{2+} in water (500 µL) in presence of 10 mM solution of Fe³⁺ in water (500 µL).

Figure S27. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Fe^{2+} in water (500 µL) in presence of 10 mM solution of Fe^{3+} in water (500 µL).

Figure S28. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Hg²⁺ in water (500 μ L) in presence of 10 mM solution of Fe³⁺ in water (500 μ L).

Figure S29. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of K⁺ in water (500 μ L) in presence of 10 mM solution of Fe³⁺ in water (500 μ L).

Figure S30. Luminescence quenching of 1' dispersed in water after gradual addition of 10 mM solution of Mn^{2+} in water (500 µL) in presence of 10 mM solution of Fe^{3+} in water (500 µL).

Figure S31. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Na⁺ in water (500 μ L) in presence of 10 mM solution of Fe³⁺ in water (500 μ L).

Figure S32. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Ni²⁺ in water (500 μ L) in presence of 10 mM solution of Fe³⁺ in water (500 μ L).

Figure S33. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Pb²⁺ in water (500 μ L) in presence of 10 mM solution of Fe³⁺ in water (500 μ L).

Figure S34. Luminescence quenching of **1'** dispersed in water after gradual addition of 10 mM solution of Zn^{2+} in water (500 µL) in presence of 10 mM solution of Fe³⁺ in water (500 µL).

Figure S35. Quenching efficiencies of 1' after addition of equal amounts of other cations and Fe^{3+} ion.

Figure S36. Quenching efficiencies of **1'** after addition of 10 mM Fe^{3+} solution as a function of exposure time in water.

Figure S37. Change of quenching efficiency (%) after addition of different volumes of 10 mM different metal cations.

Figure S38. Luminescence quenching of **1'** dispersed in DMSO after gradual addition of 3 mM solution of 2,4-DNP in DMSO.

Figure S39. Luminescence quenching of **1'** dispersed in DMSO after gradual addition of 3 mM solution of 2,4-DNT in DMSO.

Figure S40. Luminescence quenching of **1'** dispersed in DMSO after gradual addition of 3 mM solution of 2,6-DNT in DMSO.

Figure S41. Luminescence quenching of **1'** dispersed in DMSO after gradual addition of 3 mM solution of 4-NT in DMSO.

Figure S42. Luminescence quenching of **1'** dispersed in DMSO after gradual addition of 3 mM solution of 1,3-DNB in DMSO.

Figure S43. Luminescence quenching of **1'** dispersed in DMSO after gradual addition of 3 mM solution of NB in DMSO.

Figure S44. Luminescence quenching of **1'** dispersed in DMSO after gradual addition of 3 mM solution of 4-NP in DMSO.

Figure S45. Luminescence quenching of 1' dispersed in DMSO after gradual addition of 3 mM solution of 2,4-DNP in DMSO (250 μ L) in presence of 3 mM solution of PA in DMSO (250 μ L).

Figure S46. Luminescence quenching of 1' dispersed in DMSO after gradual addition of 3 mM solution of 2,4-DNP in DMSO (250 μ L) in presence of 3 mM solution of PA in DMSO (250 μ L).

Figure S47. Luminescence quenching of 1' dispersed in DMSO after gradual addition of 3 mM solution of 2,6-DNT in DMSO (250 μ L) in presence of 3 mM solution of PA in DMSO (250 μ L).

Figure S48. Luminescence quenching of 1' dispersed in DMSO after gradual addition of 3 mM solution of 4-NT in DMSO (250 μ L) in presence of 3 mM solution of PA in DMSO (250 μ L).

Figure S49. Luminescence quenching of 1' dispersed in DMSO after gradual addition of 3 mM solution of 1,3-DNB in DMSO (250 μ L) in presence of 3 mM solution of PA in DMSO (250 μ L).

Figure S50. Luminescence quenching of **1'** dispersed in DMSO after gradual addition of 3 mM solution of NB in DMSO (250 μ L) in presence of 3 mM solution of PA in DMSO (250 μ L).

Figure S51. Luminescence quenching of 1' dispersed in DMSO after gradual addition of 3 mM solution of 4-NP in DMSO (250 μ L) in presence of 3 mM solution of PA in DMSO (250 μ L).

Figure S52. Quenching efficiencies of **1'** after addition of equal amounts of different NAEs and PA in DMSO.

Figure S53. Quenching efficiencies of **1'** after addition of 3 mM PA as a function of exposure time in DMSO solvent.

Figure S54. Change of quenching efficiency (%) after addition of different volumes of 3 mM solutions of different NAEs.

Figure S55. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of $KMnO_4$ in water.

Figure S56. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of $Na_3PO_4 \cdot 12H_2O$ in water.

Figure S57. Luminescence quenching of **1'** dispersed in water after gradual addition of 3 mM solution of Na₂CO₃ in water.

Figure S58. Luminescence quenching of **1'** dispersed in water after gradual addition of 3 mM solution of NaCl in water.

Figure S59. Luminescence quenching of **1'** dispersed in water after gradual addition of 3 mM solution of NaSCN in water.

Figure S60. Luminescence quenching of **1'** dispersed in water after gradual addition of 3 mM solution of NaOAc in water.

Figure S61. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of Na_2SO_4 in water.

Figure S62. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of $NaClO_4$ ·H₂O in water.

Figure S63. Luminescence quenching of **1'** dispersed in water after gradual addition of 3 mM solution of NaCN in water.

Figure S64. Luminescence quenching of **1'** dispersed in water after gradual addition of 3 mM solution of NaHCO₃ in water.

Figure S65. Luminescence quenching of **1'** dispersed in water after gradual addition of 3 mM solution of NaBr in water.

Figure S66. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of $NaNO_2$ in water.

Figure S67. Luminescence quenching of **1'** dispersed in water after gradual addition of 3 mM solution of KMnO₄ in water (150 μ L) in presence of 3 mM solution of Cr₂O₇²⁻ in water (150 μ L).

Figure S68. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of $Na_3PO_4 \cdot 12H_2O$ in water (150 µL) in presence of 3 mM solution of $Cr_2O_7^{2-}$ in water (150 µL).

Figure S69. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of Na₂CO₃ in water (150 μ L) in presence of 3 mM solution of Cr₂O₇²⁻ in water (150 μ L).

Figure S70. Luminescence quenching of **1'** dispersed in water after gradual addition of 3 mM solution of NaCl in water (150 μ L) in presence of 3 mM solution of Cr₂O₇²⁻ in water (150 μ L).

Figure S71. Luminescence quenching of **1'** dispersed in water after gradual addition of 3 mM solution of NaSCN in water (150 μ L) in presence of 3 mM solution of Cr₂O₇²⁻ in water (150 μ L).

Figure S72. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of NaOAc in water (150 μ L) in presence of 3 mM solution of Cr₂O₇²⁻ in water (150 μ L).

Figure S73. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of Na₂SO₄ in water (150 μ L) in presence of 3 mM solution of Cr₂O₇²⁻ in water (150 μ L).

Figure S74. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of NaClO₄·H₂O in water (150 μ L) in presence of 3 mM solution of Cr₂O₇²⁻ in water (150 μ L).

Figure S75. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of NaCN in water (150 μ L) in presence of 3 mM solution of Cr₂O₇²⁻ in water (150 μ L).

Figure S76. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of NaHCO₃ in water (150 μ L) in presence of 3 mM solution of Cr₂O₇²⁻ in water (150 μ L).

Figure S77. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of NaBr in water (150 μ L) in presence of 3 mM solution of Cr₂O₇²⁻ in water (150 μ L).

Figure S78. Luminescence quenching of 1' dispersed in water after gradual addition of 3 mM solution of NaNO₂ in water (150 μ L) in presence of 3 mM solution of Cr₂O₇²⁻ in water (150 μ L).

Figure S79. Quenching efficiencies of 1' after addition of equal amounts of other anions and $Cr_2O_7^{2-}$ ion.

Figure S80. Quenching efficiencies of 1' after addition of 3 mM $Cr_2O_2^{2-}$ as a function of exposure time in water.

Figure S81. Change of quenching efficiency (%) after addition of different volumes of 3 mM different metal anions.

Figure S82. Reproducibility test for the aqueous suspension of 1' towards sensing of Fe^{3+} ion.

Figure S83. Reproducibility test for the aqueous suspension of 1' towards sensing of PA.

Figure S84. Reproducibility test for the aqueous suspension of 1' towards sensing of $Cr_2O_7^{2-1}$ ion.

Figure S85. S-V plot for the quenching of 1' at lower concentrations of Fe^{3+} ion in water. Inset: non linearity of the S-V plot at higher concentrations of Fe^{3+} ion.

Figure S86. S-V plot for the quenching of **1**' at lower concentrations of PA in DMSO. Inset: non linearity of the S-V plot at higher concentrations of PA.

Figure S87. S-V plot for the quenching of 1' at lower concentrations of $Cr_2O_7^{2-}$ ion in water. Inset: non linearity of the S-V plot at higher concentrations of $Cr_2O_7^{2-}$ ion.

Table S2. A comparison of the Stern-Volmer constant (K_{sv}), detection limit and medium used for Fe³⁺ detection for some MOFs already reported till date.

Sl. No	MOF	$K_{sv}(M^{-1})$	Detection Limit	Medium Used	Ref.
1.	$[Zr_{6}(\mu_{3}-O)_{4}(\mu_{3}-OH)_{4}(OH)_{4}(H_{2}O)_{4}(L)_{2}]$	6.51×10 ⁶	9.29×10 ⁻⁹ M	water	this work
2.	Eu ³⁺ @MIL-124	3.87×10 ⁴	0.28×10 ⁻⁶ M	water	2
3.	$[Zn(QDA)] \cdot 0.3DMF \cdot 0.2H_2O$	1.12×10 ⁶	2.30×10 ⁻⁸ M	methanol	3
4.	$[(CH_3)_2NH_2] \cdot [Tb(bptc)] \cdot x$ solvents	-	1.80×10 ⁻⁵ M	ethanol	4
5.	$(NH_2(CH_3)_2)[Zn_4(ddn)_2(COO)(H_2O)_4$	1.13×10 ⁴	1.24 ppm	water	5
6.	[La(TPT)(DMSO) ₂]·H ₂ O	1.36×10 ⁴	-	ethanol	6
7.	$[H(H_2O)_8][DyZn_4(imdc)_4(im)_4]$	2.88×10 ⁴	-	DMSO	7
8.	$[Zr_6O_4(OH)_4(2,7-CDC)_6]$ 19H ₂ O·2DMF	5.5×10 ³	9.10×10 ⁻⁷ M	water	8

9.	$[Zr_{6}O_{6}(OH)_{2}(CF_{3}COO)_{2}(C_{11}H_{5}NO_{4})_{4}$ (H ₂ O) ₄]	2.25×10 ⁷	1.7×10 ⁻⁹ M	water	9
10.	[Zr ₆ O ₆ (OH) ₂ (CF ₃ COO) ₂ (C ₁₁ H ₅ NO ₄) ₄ (H ₂ O) ₄]	1.91×10 ⁷	2.7×10 ⁻⁹ M	HEPES buffer	9
11.	[Al(OH)(BDC-N ₃)]·1.2H ₂ O·0.3DMF	6.13×10 ³	3×10 ⁻⁸ M	water	10
12.	[Zn(<i>p</i> -CNPhHIDC)(4,4'-bipy)]	1.37×10 ³	5×10 ⁻³ M	water	11
13.	EuL ₃	4.1×10 ³	10 ⁻⁴ M	ethanol	12
14.	[Eu ₂ (MFDA) ₂ (HCOO) ₂ (H ₂ O) ₆]·H ₂ O	-	3.3×10 ⁻⁷ M	DMF	13
15.	$[Cd(H_2La)0.5(H_2L_b)0.5(H_2O)]$	-	10 ⁻⁵ M	water	14
16.	$[Ln_2(Ccbp)_3 \cdot 6H_2O] \cdot 3Cl^- \cdot 4H_2O$	1.143×10 ⁵	-	ethanol	15
17.	[Cd(<i>p</i> -CNPhHIDC)(4,4'-bipy) _{0.5}]	1.99×10 ³	5×10-3 M	water	11
18.	[Tb(BTB)(DMF)]·1.5DMF·2.5H ₂ O	-	10 ⁻⁵ M	ethanol	16
19.	$[Tb_4(OH)_4(DSOA)_2(H_2O)_8] \cdot (H_2O)_8$	3.5×10 ⁴	-	water	17
20.	$[Ln(Hpzbc)_2(NO_3)] \cdot H_2O$	-	2.6×10 ⁻⁵ M	ethanol	18
21.	FJI-C8	8.245×10 ³	0.0233 mM	DMF	19
22.	[Eu ₂ L ₃ (DMF)]·2DMF	6×10 ⁵	0.793 μM	water	20
23.	[Cd ₂ (L)(bimid)(DMF) ₂]·(DMF)	3.75×10 ⁴	$3.70 \times 10^{-7} \mathrm{M}$	DMF	21
24.	$[Zn_2(TCPP)(DMF)_2]$	1.08×10 ⁴	-	ethanol	1

Table S3. A comparison of the Stern-Volmer constant (K_{sv}), detection limit and medium used for PA detection for some MOFs already reported till date.

S1.	MOF	$K_{sv}(M^{-1})$	Detection	Medium	Ref.
No.			Limit	Used	
1.	$[Zr_6(\mu_3-O)_4(\mu_3-$	4.56×10 ⁵	5.72×10 ⁻⁸ M	DMSO	this
	$OH_4(OH_4(H_2O_4(L_2)_2))$				work
2	$[[Cd(ATAIA)] \cdot 4H_2O]_n$	1.59×10 ⁷	0.94×10 ⁻⁹ M	water	22
3.	EuNDC	3.22×10 ⁴	1.64×10 ⁻⁷ M	water	23

4.	AHU-TW1	1.44×10 ⁴	4.05×10 ⁻⁶ M	DMF	24
	AHU-TW3	1.48×10 ⁴	3.94×10 ⁻⁶ M		
	AHU-TW4	5.0×10 ⁴	1.16×10 ⁻⁶ M		
	AHU-TW6	5.31×10 ⁴	1.10×10 ⁻⁶ M		
5.	[Zr ₆ O ₄ (OH) ₄ (BTDB) ₆]·8H ₂ O· 6DMF	2.49×10 ⁴	1.63×10 ⁻⁶ M	methanol	25
6.	$[Cd_5Cl_6(L)(HL)_2] \cdot 7H_2O$	4.05×10 ⁴	1.87×10 ⁻⁷ M	ethanol	26
7.	[Tb(1,3,5-BTC)]	3.41×10 ⁴	8.1×10 ⁻⁸ M	ethanol	27
8.	$Zr_6O_4(OH)_4(L)_6$	2.9 ×10 ⁴	2.6×10 ⁻⁶ M	water	28
9.	[Cd(NDC) _{0.5} (PCA)] _n	3.5×10 ⁴	-	acetonitrile	29
10.	[La(TPT)(DMSO) ₂]·H ₂ O	9.89×10 ⁴	-	ethanol	6
11.	[[CuL(I)].DMF.H ₂ O] _n	1.51×10 ⁵	215 ppb	acetonitrile	30
12.	BUT-12	3.1×10 ⁵	23 ppb	water	31
	BUT-13	5.1×10 ⁵	10 ppb		
13.	[Zn ₂ (NDC) ₂ (bpy)].Gx	0.4×10 ⁴	-	ethanol	32
14.					
	$[2n_8(ad)_4(BPDC)_6$ (0.2Me ₂ NH ₂)]·G	4.6×10 ⁴	12.9×10 ⁻⁶ M	water	33
15.	$[Zn_{8}(ad)_{4}(BPDC)_{6} \\ (0.2Me_{2}NH_{2})] \cdot G \\ [Zr_{6}O_{4}(OH)_{6}(L)_{6}]n$	4.6×10 ⁴ 5.8×10 ⁴	12.9×10 ⁻⁶ M 0.4 ppm	water water	33 34
15. 16.	$[Zn_{8}(ad)_{4}(BPDC)_{6}$ $(0.2Me_{2}NH_{2})] \cdot G$ $[Zr_{6}O_{4}(OH)_{6}(L)_{6}]n$ $[Cd_{3}(TPT)_{2}(DMF)_{2}]$ $\cdot 0.5H_{2}O]_{n}$	$ 4.6 \times 10^4 \\ \overline{5.8 \times 10^4} \\ \overline{6.56 \times 10^4} $	12.9×10 ⁻⁶ M 0.4 ppm -	water water ethanol	33 34 35
15. 16. 17.	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$ \begin{array}{r} 4.6 \times 10^4 \\ \hline 5.8 \times 10^4 \\ \hline 6.56 \times 10^4 \\ \hline 2.40 \times 10^4 \end{array} $	12.9×10 ⁻⁶ M 0.4 ppm - -	water water ethanol DMA	33 34 35 36
15. 16. 17.	$[Zn_{8}(ad)_{4}(BPDC)_{6}$ $(0.2Me_{2}NH_{2})] \cdot G$ $[Zr_{6}O_{4}(OH)_{6}(L)_{6}]n$ $[Cd_{3}(TPT)_{2}(DMF)_{2}]$ $\cdot 0.5H_{2}O]_{n}$ $[Zn_{2}(L)_{2}(dpyb)]_{n}$ $[Zn(L)(dipb)](H_{2}O)_{2}$	$ \begin{array}{r} 4.6 \times 10^{4} \\ \hline 5.8 \times 10^{4} \\ \hline 6.56 \times 10^{4} \\ \hline 2.40 \times 10^{4} \\ \hline 2.46 \times 10^{4} \end{array} $	12.9×10 ⁻⁶ M 0.4 ppm - -	water water ethanol DMA	33 34 35 36
15. 16. 17. 18.	$[Zn_{8}(ad)_{4}(BPDC)_{6}$ $(0.2Me_{2}NH_{2})] \cdot G$ $[Zr_{6}O_{4}(OH)_{6}(L)_{6}]n$ $[Cd_{3}(TPT)_{2}(DMF)_{2}]$ $\cdot 0.5H_{2}O]_{n}$ $[Zn_{2}(L)_{2}(dpyb)]_{n}$ $[Zn(L)(dipb)](H_{2}O)_{2}$ TB-Zn-CP	$\begin{array}{r} 4.6 \times 10^{4} \\ \hline 5.8 \times 10^{4} \\ \hline 6.56 \times 10^{4} \\ \hline 2.40 \times 10^{4} \\ \hline 2.46 \times 10^{4} \\ \hline 4.37 \times 10^{4} \end{array}$	12.9×10 ⁻⁶ M 0.4 ppm - - 23 ppb	water water ethanol DMA water	33 34 35 36 37
15. 16. 17. 18. 19.	$[Zn_{8}(ad)_{4}(BPDC)_{6}$ $(0.2Me_{2}NH_{2})]\cdot G$ $[Zr_{6}O_{4}(OH)_{6}(L)_{6}]n$ $[Cd_{3}(TPT)_{2}(DMF)_{2}]$ $\cdot 0.5H_{2}O]_{n}$ $[Zn_{2}(L)_{2}(dpyb)]_{n}$ $[Zn(L)(dipb)](H_{2}O)_{2}$ $TB-Zn-CP$ $[Pr_{2}(TATMA)_{2}\cdot 4DMF\cdot 4H_{2}O]_{n}$	$\begin{array}{r} 4.6 \times 10^{4} \\ \hline 5.8 \times 10^{4} \\ \hline 6.56 \times 10^{4} \\ \hline 2.40 \times 10^{4} \\ \hline 2.46 \times 10^{4} \\ \hline 4.37 \times 10^{4} \\ \hline 1.6 \times 10^{4} \end{array}$	12.9×10 ⁻⁶ M 0.4 ppm - - 23 ppb -	water water ethanol DMA water DMF	33 34 35 36 37 38
15. 16. 17. 18. 19. 20.	$\begin{split} & [Zn_8(ad)_4(BPDC)_6 \\ & (0.2Me_2NH_2)] \cdot G \\ & [Zr_6O_4(OH)_6(L)_6]n \\ & [Cd_3(TPT)_2(DMF)_2] \\ & \cdot 0.5H_2O]_n \\ & [Zn_2(L)_2(dpyb)]_n \\ & [Zn(L)(dipb)](H_2O)_2 \\ & TB-Zn-CP \\ & [Pr_2(TATMA)_2 \cdot 4DMF \cdot 4H_2O]_n \\ & [[Zn(C_{34}H_{18}O_8)_{0.5}(C_{20}N_2H_{16})_{0.5}] \\ & [0.5(C_{20}N_2H_{16})]]_n \end{split}$	$\begin{array}{c} 4.6 \times 10^{4} \\ \hline 5.8 \times 10^{4} \\ \hline 6.56 \times 10^{4} \\ \hline 2.40 \times 10^{4} \\ \hline 2.46 \times 10^{4} \\ \hline 4.37 \times 10^{4} \\ \hline 1.6 \times 10^{4} \\ \hline 8.1 \times 10^{4} \end{array}$	12.9×10 ⁻⁶ M 0.4 ppm - - 23 ppb - -	water water ethanol DMA water DMF DMF	33 34 35 36 37 38 39
15. 16. 17. 18. 19. 20. 21.	$\begin{split} & [Zn_8(ad)_4(BPDC)_6 \\ & (0.2Me_2NH_2)] \cdot G \\ & [Zr_6O_4(OH)_6(L)_6]n \\ & [Cd_3(TPT)_2(DMF)_2] \\ & \cdot 0.5H_2O]_n \\ & [Zn_2(L)_2(dpyb)]_n \\ & [Zn_2(L)_2(dpyb)](H_2O)_2 \\ & TB-Zn-CP \\ & [Pr_2(TATMA)_2 \cdot 4DMF \cdot 4H_2O]_n \\ & [[Zn(C_{34}H_{18}O_8)_{0.5}(C_{20}N_2H_{16})_{0.5}] \\ & [0.5(C_{20}N_2H_{16})]]_n \\ & [Zn(NDC)H_2O)]_n \end{split}$	$\begin{array}{r} 4.6 \times 10^{4} \\ \hline 5.8 \times 10^{4} \\ \hline 6.56 \times 10^{4} \\ \hline 2.40 \times 10^{4} \\ \hline 2.46 \times 10^{4} \\ \hline 4.37 \times 10^{4} \\ \hline 1.6 \times 10^{4} \\ \hline 8.1 \times 10^{4} \\ \hline 6 \times 10^{4} \end{array}$	12.9×10 ⁻⁶ M 0.4 ppm - - 23 ppb - 1×10 ⁻⁶ M	water water ethanol DMA water DMF DMF water	33 34 35 36 37 38 39 40
15. 16. 17. 18. 19. 20. 21.	$\begin{split} & [Zn_8(ad)_4(BPDC)_6 \\ & (0.2Me_2NH_2)] \cdot G \\ & [Zr_6O_4(OH)_6(L)_6]n \\ & [Cd_3(TPT)_2(DMF)_2] \\ & \cdot 0.5H_2O]_n \\ & [Zn_2(L)_2(dpyb)]_n \\ & [Zn(L)(dipb)](H_2O)_2 \\ & TB-Zn-CP \\ & [Pr_2(TATMA)_2 \cdot 4DMF \cdot 4H_2O]_n \\ & [[Zn(C_{34}H_{18}O_8)_{0.5}(C_{20}N_2H_{16})_{0.5}] \\ & [0.5(C_{20}N_2H_{16})]_n \\ & [Zn(NDC)H_2O)]_n \\ & [Cd(NDC)(H_2O)]_n \\ \end{split}$	$\begin{array}{r} 4.6 \times 10^{4} \\ \hline 5.8 \times 10^{4} \\ \hline 6.56 \times 10^{4} \\ \hline 2.40 \times 10^{4} \\ \hline 2.46 \times 10^{4} \\ \hline 4.37 \times 10^{4} \\ \hline 1.6 \times 10^{4} \\ \hline 8.1 \times 10^{4} \\ \hline 6 \times 10^{4} \\ \hline 2.385 \times 10^{4} \end{array}$	12.9×10 ⁻⁶ M 0.4 ppm - - 23 ppb - 1×10 ⁻⁶ M 4×10 ⁻⁶ M	water water ethanol DMA water DMF DMF DMF water	33 34 35 36 37 38 39 40

23.	H ₂ ATAIA	1.759×10 ⁵	120 ppb	water	42
	H ₂ AMTAIA	9.875×10 ⁴	0.8 ppm		
	H ₂ DMTAIA	1.646×10 ⁴	1.2 ppm		
24.	$[Zn_2(TCPP)(DMF)_2]$	3.59×10 ⁴	-	ethanol	1

Table S4. A comparison of the Stern-Volmer constant (K_{sv}), detection limit and medium used for $Cr_2O_7^{2-}$ detection for some MOFs already reported till date

Sl. No	MOF	$K_{sv}(M^{-1})$	Detection Limit	Medium Used	Ref.
1.	$\begin{bmatrix} Zr_6(\mu_3-O)_4(\mu_3-O)_4(\mu_3-O)_4(OH)_4(OH)_4(H_2O)_4(L)_2 \end{bmatrix}$	1.02× 10 ⁶	2.88× 10 ⁻⁸ M	water	this work
2.	JLU-MOF60	5.91× 10 ⁴	3.78× 10 ⁻⁷ M	water	43
3.	JLU-MOF50	4.99× 10 ⁴	-	water	44
4.	$[(CH_3)_2NH_2]_6[Cd_3L(H_2O)_2] \cdot 12H_2$ O	9.19 × 10 ⁵	-	water	45
5.	NUM-5	9.4× 10 ⁴	0.7 ppm	water	46
6.	$[Cd(TIPA)_2(ClO_4^-)_2] \cdot (DMF)_3(H_2O)$	7.15× 10 ⁴	8 ppb	water	47
7.	[Cd(L)(TPOM) _{0.75}].xS	1.35×10^4	-	water	48
8.	$[Zn(L)(BBI) \cdot (H_2O)_2]$	1.17× 10 ⁴	-	water	48
9.	$[Zn_2(TPOM)(NDC)_2]$ ·3.5H ₂ O	9.21× 10 ⁴	2.35×10 ⁻⁶ M	water	49
10.	BUT-28	1.02×10^{5}	36 ppb	water	50
11.	534-МОГ-ТЬ	1.37×10^{4}	0.14× 10 ⁻³ M	water	51
12.	[Eu(ipbp) ₂ (H ₂ O) ₃]Br ₆ H ₂ O	8.98×10^{3}	5.16×10-6 M	water	52
13.	$[Zn_2(tpeb)_2(2,3-ndc)_2] \cdot H_2O\}_n$	-	2.531 ppb	water	53
14.	MOR-2	-	4 ppb	water	54
15.	Zn-MOF-1	2.07×10^{4}	3.53×10 ⁻⁶ M	water	55
16.	${[Zn(L)(bpp)] \cdot DMF}_n$	2.78×10^{3}	3.52×10 ⁻⁶ M	DMF	56
	${[Zn(L)(bpe)] \cdot DMF}_n$	7.91× 10 ³	4.28×10 ⁻⁶ M		
17.	[Eu(L)(HCOO)(H ₂ O)] _n	2.76×10^{4}	$1.0 \times \overline{10^{-6} \mathrm{M}}$	water	57

	$[Tb(L)(HCOO)(H_2O)]_n$	2.13×10^{4}	2.1× 10 ⁻⁶ M		
18.	Eu-MOF	1.55×10^{4}	9.2×10 ⁻⁶ M	water	58
19.	Eu ³⁺ @MIL-121	4.34×10^{3}	5.4×10 ⁻⁸ M	water	59
20.	$[Zn_7(TPPE)_2(SO_4^{2-})_7](DMF \cdot H_2O)$	1.09×10^{4}	26.98 ppb	water	60
21.	[Tb(TATAB)(H ₂ O) ₂]·NMP	1.11×10^4	-	water	61
22.	$[Zn_3(tza)_2(\mu_2-OH)_2(H_2O)_2]H_2O$	5.02×10^{3}	10 ⁻⁶ M	water	62
23.	$[Zn(btz)]_n$	3.19×10^{3}	$2 \times 10^{-6} \mathrm{M}$	water	63
	$[Zn_2(ttz)H_2O]_n$	2.19×10^{3}	$2 \times 10^{-5} \mathrm{M}$		
24.	$[Eu(Himdc)(ina)(H_2O)]_n$	2.46×10^{3}	-	water	64
-					
25.	$[Eu_2(H_2O)(DCPA)_3]_n$	8.7×10^{3}	$1.09 \times 10^{-4} \mathrm{M}$	water	65
26.	BUT-39	1.57×10^{3}	$1.5 \times 10^{-6} \mathrm{M}$	water	66

Figure S88. 3D S-V plots for the quenching of **1'** upon the addition of various concentrations of different metal cations.

Figure S89. 3D S-V plots for the quenching of 1' upon the addition of various concentrations of different NAEs.

Figure S90. 3D S-V plots for the quenching of **1'** upon the addition of various concentrations of different metal anions.

Figure S91. S-V plots at different temperatures for quenching of 1' by Fe³⁺ solution.

Table S5. Liner regression analysis of the S-V plots (Figure S91) at different temperatures for quenching of 1' by Fe³⁺ solution.

T (K)	$K_{sv}(M^{-1}) \times 10^{6}$	R ²
283	11.083	0.99904
293	9.952	0.99342
303	7.967	0.97185

Figure S92. S-V plots at different temperatures for quenching of 1' by PA solution.

T (K)	$K_{sv}(M^{-1}) \times 10^5$	R ²
283	6.606	0.99158
293	4.443	0.98416
303	2.756	0.99693

Table S6. Liner regression analysis of the S-V plots (Figure S92) at different temperatures for quenching of **1'** by PA solution.

Figure S93. S-V plots at different temperatures for quenching of 1' by $Cr_2O_7^{2-}$ solution.

Table S7. Liner regression analysis of the S-V plots (Figure S93) at different temperatures for quenching of 1' by $Cr_2O_7^{2-}$ solution.

$K_{sv}(M^{-1}) \times 10^{6}$	R ²
1.438	0.99320
1.164	0.99669
1.044	0.98411

Figure S94. Lifetime decay profile of 1' before and after addition of 200 μ L of 10 mM Fe³⁺ solution in water.

Table S8. Average excited state lifetime ($\langle \tau \rangle$) values of **1'** before and after addition of 200 μ L of 10 mM Fe³⁺ solution ($\lambda_{ex} = 295$ nm).

Volume	B ₁	B ₂	a ₁	a ₂	τ_1 (ns)	τ_1 (ns)	<7>*	χ^2
Added							(ns)	
(µL)								
0	0.006	0.006	32.61	62.39	0.48	0.92	0.78	1.00
200	0.008	0.004	54.66	45.34	0.53	0.93	0.71	1.01

* $<\tau>=a_1\tau_1+a_2\tau_2$

Figure S95. Lifetime decay profile of 1' before and after addition of 200 μ L of 10 mM PA in DMSO.

Table S9. Average excited state lifetime ($\langle \tau \rangle$) values of **1'** before and after addition of 200 µL of 10 mM PA solution in DMSO ($\lambda_{ex} = 295$ nm).

Volume	B ₁	B ₂	a ₁	a ₂	τ_1 (ns)	τ_1 (ns)	<τ>*	χ^2
Added							(ns)	
(µL)								
0	0.016	0.001	88.52	11.48	0.36	1.06	0.44	1.01
200	0.021	0.001	99.90	9.91	0.28	1.10	0.38	1.03

 $\overline{\ast} < \tau > = a_1 \tau_1 + a_2 \tau_2$

Figure S96. Lifetime decay profile of 1' before and after addition of 150 μ L of 3 mM Cr₂O₇²⁻ solution in water.

Table S10. Average excited state lifetime ($<\tau>$) values of 1' before and after addition of 150 μ L of 3 mM Cr₂O₇²⁻ solution ($\lambda_{ex} = 295$ nm).

Volume	B ₁	B ₂	a ₁	a ₂	τ_1 (ns)	τ_1 (ns)	<\cap >*	χ^2
Added							(ns)	
(µL)								
0	0.012	0.001	90.32	9.67	0.69	1.40	0.76	1.01
150	0.020	0.001	92.13	7.66	0.35	2.73	0.53	1.01

* $<\tau> = a_1\tau_1 + a_2\tau_2$

Figure S97. Change of fluorescence intensity of aqueous suspension of 1' as a function of concentration of added Fe^{3+} solution in water

Figure S98.Change of fluorescence intensity of **1'** suspension in DMSO as a function of concentration of added PA solution in DMSO.

Figure S99. Change of fluorescence intensity of aqueous suspension of 1' as a function of concentration of added $Cr_2O_7^{2-}$ solution in water

Figure S100. EDX analysis of 1' after treatment of 10 mM Fe^{3+} aqueous solution.

Figure S101. UV-Vis absorption spectra of the aqueous solutions containing different metal ions $(10 \times 10^{-3} \text{ M})$. The emission spectrum of 1' (pink curve) (3 mg) dispersed in water (3 mL).

Figure S102. Quenching of the fluorescence intensity of 1' with incremental addition of 10 mM MV^{2+} solution to a 3 mL stable aqueous suspension of 1'.

Figure S103. HOMO and LUMO energies of the selective NAEs.

Table S11. HOMO and LUMO energy levels of selected analytes calculated by density functional theory (DFT) at B3LYP/6-31G* accuracy level using Gaussian 09 package of program.⁶⁷

Analyte	НОМО	LUMO	Band Gap
	(eV)	(eV)	(eV)
PA	-8.2374	-3.898	4.3394
4-NP	-6.9207	-2.2213	4.6994
2,4-DNP	-7.6644	-2.8202	4.8442
NB	-7.5917	-2.4294	5.1623
4-NT	-7.3626	-2.3171	5.0454
1,3-DNB	-8.4129	-3.1350	5.2779
2,6-DNT	-7.8913	-2.8501	5.0412
2,4-DNT	-8.1131	-2.9769	5.1362

Figure S104. UV-Vis absorption spectra of the NAEs in DMSO $(3 \times 10^{-3} \text{ M})$. The emission spectrum of 1' (black curve) (3 mg) dispersed in DMSO (3 mL).

Figure S105. UV-Vis absorption spectra of the aqueous solutions $(3 \times 10^{-3} \text{ M})$ containing different metal anions. The emission spectrum of **1'** (green curve) (3 mg) dispersed in water (3 mL).

Calculated Crystallographic Information File (CIF) for compound 1.

data compound 1 'Materials Studio' audit creation method 'CMMM' symmetry space group name H-M _symmetry_Int_Tables_number 65 symmetry cell setting orthorhombic loop _symmetry_equiv_pos_as_xyz х,у, z -x,-y,z -x,y,-z x,-y,-z -x,-y,-z x,y,-z x,-y,z -x,y,z x+1/2,y+1/2,z -x+1/2,-y+1/2,z -x+1/2, y+1/2, -zx+1/2,-y+1/2,-z -x+1/2,-y+1/2,-z x+1/2,y+1/2,-z x+1/2, -y+1/2, z-x+1/2,y+1/2,z 19.4920 cell length a cell length b 33.4890 _cell_length_c 12.6080 _cell_angle_alpha 90.0000 _cell_angle_beta 90.0000 cell angle gamma 90.0000 loop _atom_site label _atom_site_type_symbol _atom_site_fract x atom site fract y _atom_site_fract_z _atom_site_U_iso_or equiv _atom_site_adp_type atom site occupancy Zr1 Zr -0.09026 0.00000 0.12976 0.10132 Uiso 1.00 0.00000 -0.07076 0.00000 0.10132 Uiso 1.00 Zr2 Zr 0.00000 -0.03598 0.14402 0.10132 Uiso 1.00 01 0 0 -0.09777 -0.04057 0.00000 0.10132 Uiso 1.00 02 03 0 -0.19988 0.00000 0.16079 0.10132 Uiso 1.00 04 0 -0.06992 -0.00000 0.29906 0.10132 Uiso 1.00 -0.06274 -0.10550 0.10695 0.10132 Uiso 1.00 05 0 -0.12725 -0.05748 0.18972 0.10132 Uiso 1.00 06 0 С -0.10823 -0.09418 0.17507 0.10132 Uiso 1.00 C1 С C2 -0.13960 -0.12564 0.24312 0.10132 Uiso 1.00 CЗ С -0.19932 -0.11810 0.30267 0.10132 Uiso 1.00 C -0.22714 -0.14769 C -0.19466 -0.18491 0.36870 0.10132 Uiso C4 1.00 1.00 C5 0.37919 0.10132 Uiso С -0.13569 -0.19267 0.31903 0.10132 Uiso 1.00 C6 C7 С -0.10852 -0.16347 0.25170 0.10132 Uiso 1.00

С8	С	-0.22506	-0.21734	0.44392	0.10132	Uiso	1.00
N1	Ν	-0.25000	-0.25000	0.39241	0.10132	Uiso	1.00

References:

1. Jiang, Y.; Sun, L.; Du, J.; Liu, Y.; Shi, H.; Liang, Z.; Li, J. Multifunctional zinc metal-organic framework based on designed H_4TCPP ligand with aggregation-induced emission effect: CO_2 adsorption, luminescence, and sensing property. *Cryst. Growth Des.* **2017**, 17, 2090–2096.

2. Xu, X.-Y.; Yan, B. Eu(III)-Functionalized MIL-124 as Fluorescent Probe for Highly Selectively Sensing Ions and Organic Small Molecules Especially for Fe(III) and Fe(II). *ACS Appl. Mater. Interfaces* **2015**, 7, 721-729.

3. Gogoi, C.; Yousufuddin, M.; Biswas, S. A new 3D luminescent Zn(II)–organic framework containing a quinoline-2,6-dicarboxylate linker for the highly selective sensing of Fe(III) ions. *Dalton Trans.* **2019**, 48, 1766-1773.

4. Zhao, X.-L.; Tian, D.; Gao, Q.; Sun, H.-W.; Xu, J.; X.-H. Bu. A chiral lanthanide metal–organic framework for selective sensing of Fe(III) ions. *Dalton Trans.* **2016**, 45, 1040-1046.

5. Ma, A.; Wu, J.; Han, Y.; Chen, F.; Li, B.; Cai, S.; Huang, H.; Singh, A.; Kumar, A.; Liu, J. Rational synthesis of a luminescent uncommon (3,4,6)-c connected Zn(II) MOF: a dual channel sensor for the detection of nitroaromatics and ferric ions. *Dalton Trans.* **2018**, 47, 9627–9633.

6. Zhang, C.; Yan, Y.; Pan, Q.; Sun, L.; He, H.; Liu, Y.; Liang, Z.; Li, J. A microporous lanthanum metal–organic framework as a bi-functional chemosensor for the detection of picric acid and Fe3+ ions. *Dalton Trans.* **2015**, 44, 13340-13346.

7. Li, Y.-F.; Wang, D.; Liao, Z.; Kang, Y.; Ding, W.-H.; Zheng, X.-J.; Jin, L.-P. Luminescence tuning of the Dy–Zn metal–organic framework and its application in the detection of Fe(III) ions. *J. Mater. Chem. C* **2016**, 4, 4211-4217.

8. Das, A.; Biswas, S. A multi-responsive carbazole-functionalized Zr(IV)-based metalorganic framework for selective sensing of Fe(III), cyanide and p-nitrophenol. *Sens. Actuator B-Chem.* **2017**, 250, 121-131.

9. Gogoi, C.; Biswas, S. A new quinoline based luminescent Zr(IV) metal–organic framework for the ultrasensitive recognition of 4-nitrophenol and Fe(III) ions. *Dalton Trans.* **2018**, 48, 14696-14705.

10. Das, A.; Banesh, S.; Trivedi, V.; Biswas, S. Extraordinary sensitivity for H_2S and Fe(III) sensing in aqueous medium by Al-MIL-53-N₃ metal–organic framework: in vitro and in vivo applications of H_2S sensing. *Dalton Trans.* **2018**, 47, 2690–2700.

11. Zhang, J.; Zhao, L.; Liu, Y.; Li, M.; Li, G.; Meng, X. Two luminescent transitionmetal–organic frameworks with a predesigned ligand as highly sensitive and selective iron(III) sensors. *New J.Chem.* **2018**, 42, 6839-6847.

12. Zheng, M.; Tan, H.; Xie, Z.; Zhang, L.; Jing, X.; Sun, Z. Fast response and high sensitivity europium metal organic framework fluorescent probe with chelating terpyridine sites for Fe³⁺. *ACS Appl. Mater. Interfaces* **2013**, 5, 1078–1083.

13. Zhou, X.-H.; Li, L.; Li, H.-H.; Li, A.; Yanga, T.; Huang, W. A flexible Eu(III)-based metal–organic framework: turn-off luminescent sensor for the detection of Fe(III) and picric acid. *Dalton Trans.* **2013**, 42, 12403-12409.

14. Wu, Y.; Yang, G.-P.; Zhang, Y.; Shi, N.; Han, J.; Wang, Y.-Y. A new luminescent Cd(II)-MOF as a highly selective chemical probe for Fe^{3+} in aqueous solution with mixed metal ions. *RSC Adv.* **2015**, *5*, 90772-90777.

15. Wang, K.-M.; Du, L.; Ma, Y.-L.; Zhao, J.-S.; Wang, Q.; Yan, T.; Zhao, Q.-H. Multifunctional chemical sensors and luminescent thermometers based on lanthanide metal–organic framework materials. *CrystEngComm* **2016**, 18, 2690-2700.

16. Xu, H.; Hu, H.-C.; Cao, C.-S.; Zhao, B. Lanthanide organic framework as a regenerable luminescent probe for Fe³⁺. *Inorg. Chem.* **2015**, *5*4, 4585-4587.

17. Dong, X.-Y.; Wang, R.; Wang, J.-Z.; Wang, S.-Q.; Mak, T. C. W. Highly selective Fe³⁺ sensing and proton conduction in a water-stable sulfonate–carboxylate Tb–organic-framework. *J. Mater. Chem. A* **2015**, 3, 641–647.

18. Li, G.-P.; Liu, G.; Li, Y.-Z.; Hou, L.; Wang, Y.-Y.; Zhu, Z. Uncommon pyrazoylcarboxyl bifunctional ligand-based microporous lanthanide systems: sorption and luminescent sensing properties. *Inorg. Chem.* **2016**, 55, 3952-3959.

19. Chen, C.-H.; Wang, X.-S.; Li, L.; Huang, Y.-B.; Cao, R. Highly selective sensing of Fe3+ by an anionic metal–organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. *Dalton Trans.* **2018**, 47, 3452–3458.

20. Rao, P. C.; Mandal, S. Europium-based metal–organic framework as a dual luminescence sensor for the selective detection of the phosphate anion and Fe³⁺ ion in aqueous media. *Inorg. Chem.* **2018**, 57, 11855-11858.

21. Zhou, L.; Zhao, K.; Hu, Y.-J.; Feng, X.-C.; Shi, P.-D.; Zheng, H.-G. A bifunctional photoluminescent metal-organic framework for detection of Fe³⁺ ion and nitroaromatics. *Inorg. Chem. Commun.* **2018**, 89, 68-72.

22. Das, P.; Mandal, S. K. Strategic design and functionalization of an amine-decorated luminescent metal organic framework for selective gas/vapor sorption and nanomolar sensing of 2,4,6-trinitrophenol in water. *ACS Appl. Mater. Interfaces* **2018**, 10, 25360–25371.

23. Xia, T.; Zhu, F.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework. *J. Solid State Chem.* **2017**, 245, 127–131.

24. Wang, D.; Hu, Z.; Xu, S.; Li, D.; Zhang, Q.; Ma, W.; Zhou, H.; Wu, J.; Tian, Y. Fluorescent metal–organic frameworks based on mixed organic ligands: new candidates for highly sensitive detection of TNP. *Dalton Trans.* **2019**, 48, 1900–1905.

25. SK, M.; Biswas, S. A thiadiazole-functionalized Zr(IV)-based metal-organic framework as a highly fluorescent probe for the selective detection of picric acid. *CrystEngComm* **2016**, 18, 3104-3113.

26. Buragohain, A.; Yousufuddin, M.; Sarma, M.; Biswas, S. 3D luminescent amidefunctionalized cadmium tetrazolate framework for selective detection of 2,4,6-trinitrophenol. *Cryst. Growth Des.* **2016**, 16, 842–851.

27. Xiao, J.-D.; Qiu, L.-G.; Ke, F.; Yuan, Y.-P.; Xu, G.-S.; Wang, Y.-M.; Jiang, X. Rapid synthesis of nanoscale terbium-based metal–organic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid. *J. Mater. Chem. A* **2013**, 1, 8745-8752.

28. Nagarkar, S. S.; Desai, A. V.; Ghosh, S. K. A fluorescent metal–organic framework for highly selective detection of nitro explosives in the aqueous phase. *Chem. Commun.* **2014**, 50, 8915-8918.

29. Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Highly selective detection of nitro explosives by a luminescent metal–organic framework. *Angew. Chem. Int. Ed* **2013**, 52, 2881–2885.

30. Santra, A.; Francis, M.; Parshamoni, S.; Konar, S. Nanoporous Cu(I) metal–organic framework: selective adsorption of benzene and luminescence sensing of nitroaromatics. *ChemistrySelect* **2017**, *2*, 3200-3206.

31. Wang, B.; Lv, X.-L.; Feng, D.; Xie, L.-H.; Zhang, J.; Li, M.; Xie, Y.; Li, J.-R.; Zhou, H.-C. Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. *J. Am. Chem. Soc.* **2016**, 138, 6204-6216.

32. Asha, K. S.; Bhattacharyya, K.; Mandal, S. Discriminative detection of nitro aromatic explosives by a luminescent metal–organic framework. *J. Mater. Chem. C* **2014**, 2, 10073-10081.

33. Joarder, B.; Desai, A. V.; Samanta, P.; Mukherjee, S.; Ghosh, S. K. Selective and sensitive aqueous-phase detection of 2,4,6-trinitrophenol (TNP) by an amine-functionalized metal–organic framework. *J. Mater. Chem. C* **2014**, 2, 10073-10081.

34. Nagarkar, S. S.; Desai, A. V.; Samanta, P.; Ghosh, S. K. Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal–organic framework with a pendant recognition site. *Dalton Trans.* **2015**, 44, 15175-15180.

35. Zhang, C.; Sun, L.; Yan, Y.; Li, J.; Song, X.; Liu, Y.; Liang, Z. A luminescent cadmium metal–organic framework for sensing of nitroaromatic explosives. *Dalton Trans.* **2015**, 44, 230-236.

36. Shi, Z.-Q.; Guo, Z.-J.; Zheng, H.-G. Two luminescent Zn(II) metal–organic frameworks for exceptionally selective detection of picric acid explosives. *Chem. Commun.* **2015,** 51, 8300-8303.

37. Shanmugaraju, S.; Dabadie, C.; Byrne, K.; Savyasachi, A. J.; Umadevi, D.; Schmitt, W.; Kitchen, J. A.; Gunnlaugsson, T. A supramolecular Troger's base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in wate. *Chem. Sci.* **2017**, 8, 1535-1546.

38. He, H.; Chen, S.-H.; Zhang, D.-Y.; Yang, E.-C.; Zhao, X.-J. A luminescent metalorganic framework as an ideal chemosensor for nitroaromatic compounds. *RSC Adv.* **2017**, 7, 38871-38876.

39. Sanda, S.; Parshamoni, S.; Biswas, S.; Konar, S. Highly selective detection of palladium and picric acid by a luminescent MOF: a dual functional fluorescent sensor. *Chem. Commun.* **2015**, 51, 6576-6579.

40. Ghosh, P.; Saha, S. K.; Roychowdhury, A.; Banerjee, P. Recognition of an explosive and mutagenic water pollutant, 2,4,6-Trinitrophenol, by cost-effective luminescent MOFs. *Eur. J. Inorg. Chem.* **2015**.

41. Mukherjee, S.; Desai, A. V.; Manna, B.; Inamdar, A. I.; Ghosh, S. K. Exploitation of guest accessible aliphatic amine functionality of a metal–organic framework for selective detection of 2,4,6-trinitrophenol (TNP) in water. *Cryst. Growth Des.* **2015**, 15, 4627-4634.

42. Das, P.; Mandal, S. K. Understanding the effect of an amino group on the selective and ultrafast detection of TNP in water using fluorescent organic probes. *J. Mater. Chem. C* **2018**, 6, 3288-3297.

43. Liu, J.; Ye, Y.; Sun, X.; Liu, B.; Li, G.; Liang, Z.; Liu, Y. A multifunctional Zr(IV)based metal–organic framework for highly efficient elimination of Cr(VI) from the aqueous phase. *J. Mater. Chem. A* **2019**, 7, 16833-16841.

44. Sun, X.; Yao, S.; Yu, C.; Li, G.; Liu, C.; Huo, Q.; Liu, Y. An ultrastable Zr-MOF for fast capture and highly luminescence detection of $Cr_2O_7^2$ simultaneously in an aqueous phase. *J. Mater. Chem. A* **2018**, 6, 6363-6369.

45. Lu, B.-B.; Jiang, W.; Yang, J.; Liu, Y.-Y.; Ma, J.-F. Resorcin[4]arene-based microporous metal-organic framework as an efficient catalyst for CO₂ cycloaddition with epoxides and highly selective luminescent sensing of $Cr_2O_7^{2-}$. ACS Appl. Mater. Interfaces **2017**, 9, 39441-39449.

46. Yao, Z.-Q.; Li, G.-Y.; Xu, J.; Hu, T.-L.; Bu, X.-H. A water-stable luminescent Zn^{II} metal-organic framework as chemosensor for high-efficiency detection of Cr^{VI} -anions ($Cr_2O_7^{2-}$ and CrO_4^{2-}) in aqueous solution. *Chem. Eur. J.* **2018**, 24, 3192-3198.

47. Fu, H.-R.; Zhao, Y.; Zhou, Z.; Yang, X.-G.; Ma, L.-F. Neutral ligand TIPA-based two 2D metal–organic frameworks: ultrahigh selectivity of C_2H_2/CH_4 and efficient sensing and sorption of Cr(VI). *Dalton Trans.* **2018**, 47, 3725-3732.

48. Zhao, Y.; Xu, X.; Qiu, L.; Kang, X.; Wen, L.; Zhang, B. Metal-organic frameworks constructed from a new thiophene functionalized dicarboxylate: luminescence sensing and pesticide removal. *ACS Appl. Mater. Interfaces* **2017**, 9, 15164-15175.

49. Lv, R.; Li, H.; Su, J.; Fu, X.; Yang, B.; Gu, W.; Liu, X. Zinc metal-organic framework for selective detection and differentiation of Fe(III) and Cr(VI) ions in aqueous solution. *Inorg. Chem.* **2017**, 56, 12348-12356.

50. Xu, M.-M.; Kong, X.-J.; He, T.; Wu, X.-Q.; Xie, L.-H.; Li, J.-R. A stable Zr(IV)-based metal-organic framework constructed from C=C bridged di-isophthalate ligand for sensitive detection of $Cr_2O_7^{2-}$ in water. *Inorg. Chem.* **2018**, 57, 14260-14268.

51. Chen, M.; Xu, W.-M.; Tian, J.-Y.; Cui, H.; Zhang, J.-X.; Liu, C.-S.; Du, M. A terbium(III) lanthanide–organic framework as a platform for a recyclable multi-responsive luminescent sensor. *J. Mater. Chem. C* **2017**, *5*, 2015-2021.

52. Zhang, C.; Sun, L.; Yan, Y.; Shi, H.; Wang, B.; Liang, Z.; Li, J. A novel photo- and hydrochromic europium metal–organic framework with good anion sensing properties. *J. Mater. Chem. C* **2017**, *5*, 8999-9004.

53. Gu, T.-Y.; Dai, M.; Young, D. J.; Ren, Z.-G.; Lang, J.-P. Luminescent Zn(ii) coordination polymers for highly selective sensing of Cr(III) and Cr(VI) in water. *Inorg. Chem.* **2017**, 56, 4668-4678.

54. Rapti, S.; Sarma, D.; Diamantis, S. A.; Skliri, E.; Armatas, G. S.; Tsipis, A. C.; Hassan, Y. S.; Alkordi, M.; Malliakas, C. D.; Kanatzidis, M. G.; Lazarides, T.; Plakatouras, J. C.; Manos, M. J. All in one porous material: exceptional sorption and selective sensing of hexavalent chromium by using a Zr⁴⁺ MOF. *J. Mater. Chem. A* **2017**, *5*, 14707-14719.

55. Guo, X.-Y.; Zhao, F.; Liu, J.-J.; Liu, Z.-L.; Wang, Y.-Q. An ultrastable zinc(II)–organic framework as a recyclable multi-responsive luminescent sensor for Cr(III), Cr(VI) and 4-nitrophenol in the aqueous phase with high selectivity and sensitivity. *J. Mater. Chem. A* 2017, 5, 20035-20043.

56. Chen, Z. W.; Mi, X. N.; Wang, S. N.; Lu, J.; Li, Y. W.; Li, D. C.; Dou, J. M. Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe³⁺ and Cr²O⁷²⁻ ions. *J. Solid State Chem.* **2018**, 261, 75-85.

57. Sun, Z.; Yang, M.; Ma, Y.; Li, L. C. Multi-responsive luminescent sensors based on two-dimensional lanthanide-metal organic frameworks for highly selective and sensitive detection of Cr(III) and Cr(VI) ions and benzaldehyde. *Cryst. Growth Des.* **2017**, 17, 4326-4335.

58. Gai, Y.-L.; Guo, Q.; Zhao, X.-Y.; Chen, Y.; Liu, S.; Zhang, Y.; Zhuo, C.-X.; Yao, C.; Xiong, K.-C. Extremely stable europium-organic framework for luminescent sensing of $Cr_2O_7^{2-}$ and Fe³⁺ in aqueous systems. *Dalton Trans.* **2018**, 47, 12051-12055.

59. Hao, J.-N.; Yan, B. Ln^{3+} post-functionalized metal–organic frameworks for color tunable emission and highly sensitive sensing of toxic anions and small molecules. *New J. Chem.* **2016**, 40, 4654-4661.

60. Wu, X.-X.; Fu, H.-R.; Han, M.-L.; Zhou, Z.; Ma, L.-F. Tetraphenylethylene immobilized metal-organic frameworks: highly sensitive fluorescent sensor for the detection of $Cr_2O_7^{2-}$ and nitroaromatic explosives. *Cryst. Growth Des* **2017**, 17, 6041-6048.

61. Wen, G.-X.; Han, M.-L.; Wu, X.-Q.; Wu, Y.-P.; Dong, W.-W.; Zhao, J.; Li, D.-S.; Ma, L.-F. A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium(III)–organic framework. *Dalton Trans.* **2016**, 45, 15492-15499.

62. Song, T.-Q.; Dong, J.; Gao, H.-L.; Cui, J.-Z.; Zhao, B. A unique zinc-organic framework constructed through in situ ligand synthesis for conversion of CO₂ under mild

conditions and as a luminescence sensor for $Cr_2O_7^{2-}/CrO_4^{2-}$. *Dalton Trans.* **2017**, 46, 13862-13868.

63. Cao, C.-S.; Hu, H.-C.; Xu, H.; Qiao, W.-Z.; Zhao, B. Two solvent-stable MOFs as a recyclable luminescent probe for detecting dichromate or chromate anions. *CrystEngComm* **2016**, 18, 4445-4451.

64. Liu, L.-H.; Qiu, X.-T.; Wang, Y.-J.; Shi, Q.; Sun, Y.-Q.; Chen, Y.-P. NIR emission and luminescent sensing of a lanthanide–organic framework with Lewis basic imidazole and pyridyl sites. *Dalton Trans.* **2017**, 46, 12106-12113.

65. He, H. M.; Chen, S.-H.; Zhang, D.-Y.; Hao, R.; Zhang, C.; Yang, E.-C.; Zhao, X.-J. A micrometer-sized europium(III)–organic framework for selective sensing of the $Cr_2O_7^{2-}$ anion and picric acid in water systems. *Dalton Trans.* **2017**, 46, 13502-13509.

66. He, T.; Zhang, Y.-Z.; Kong, X.-J.; Yu, J. M.; Lv, X.-L.; Wu, Y. F.; Guo, Z.-J.; Li, J.-R. Zr(IV)-based metal-organic framework with T-shaped ligand: unique structure, high stability, selective detection, and rapid adsorption of $Cr_2O_7^{2-}$ in water. *ACS Appl. Mater. Interfaces* **2018**, 10, 16650-16659.

67. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Gaussian, Inc., Wallingford CT* **2009**.