Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information (ESI)

Switching-on Superparamagnetism in diluted magnetic Fe (III) doped CdSe Quantum Dots

Amar Nath Yadav¹, Jasleen K. Bindra², Narendra Jakhar³, Kedar Singh*¹

S.1 EDX analysis of Fe doped CdSe QDs

Figure S.1 EDX spectrum of Fe doped CdSe QDs. Inset shows elemental mapping of Fe doped CdSe QDs

¹School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India

²Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida-32306, United States

²National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida -32310, United States

³Department of Physics, University of Rajasthan, Jaipur-302004, India

S.2 TRPL Fitting

The PL decay curves of CdSe and Fe doped CdSe QDs can be well fitted with a bi-exponential function, using the following equation

$$Y(\tau) = a_1 e^{\frac{-\tau}{\tau_1}} + a_2 e^{\frac{-\tau}{\tau_2}}$$

The average lifetime calculated by

$$\tau_{ave} = \frac{a_1 \tau_1^2 + a_2 \tau_2^2}{a_1 \tau_1 + a_2 \tau_2}$$

Where τ_1 and τ_2 are the first and second component of decay time, a_1 and a_2 are corresponding amplitudes (1).

S.3 Field-dependent magnetization Curve

Figure S.2 MH curve for Cd_{0.955}Fe_{0.005}Se QDs at 10 K. Inset image shows hysteresis loop.

Figure S.3 MH curve of Cd_{0.955}Fe_{0.005}Se QDs at 15 K. Inset image shows hysteresis loop.

Figure S.4 MH curve of Cd_{0.955}Fe_{0.005}Se QDs at 20 K. Inset image shows hysteresis loop.

Figure S.5 MH curve of Cd_{0.955}Fe_{0.005}Se QDs at 50 K. Inset image shows hysteresis loop.

Calculation of the number of atoms per QD lattice

The calculation is as follows:

The volume of the sphere: $\frac{4}{3} \prod r^3$

For 3 nm of Fe: CdSe QD, r = 1.5 nm

Thus, the volume of the QD, $V_{QD} = 14.13 \text{ nm}^3$

The volume of CdSe (wurtzite) unit cell, $V_{unit cell} = 0.112 \text{ nm}^3$

The number of the unit cells in 3 nm of Fe: CdSe QD

$$N = \frac{v_{QD}}{v_{unit \, cell}} \sim 126$$

r= 1.5 nm

Which means for 0.5% Fe doped CdSe QD, we have an average of $\sim 2~Fe$ atoms

References

1. A. N. Yadav, A.K. Singh, S. Srivastava, M. Kumar, B.K. Gupta, K. Singh, Phys. Chem. Phys., 2019, 21, 6265