
## Electronic Supplementary Information (ESI)

## Solution-synthesis of Sb<sub>2</sub>Se<sub>3</sub> nanorods using KSeCN as a molecular selenium source

Junli Wang\*,a and Fan Guana

<sup>a</sup>School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.

\*E-mail: wangjl@ujs.edu.cn; junleewang@yahoo.com.



**Fig. S1** TEM images of  $Sb_2Se_3$  sample prepared using different  $SbCl_3/KSeCN$  molar ratios: (a,b) 1:1 and (c) 1:2. It can be clearly seen that 1:1  $SbCl_3/KSeCN$  produced a mixture of  $Sb_2Se_3$  NRs and  $Sb_2O_3$  nanoparticles whereas 1:2  $SbCl_3/KSeCN$  produced pure  $Sb_2Se_3$  NRs. EDS spectra shown in (d) prove their chemical compositions, which are ~2:3 Sb/Se for  $Sb_2Se_3$  NRs and ~2:3 Sb/O for  $Sb_2O_3$  nanoparticles, respectively.

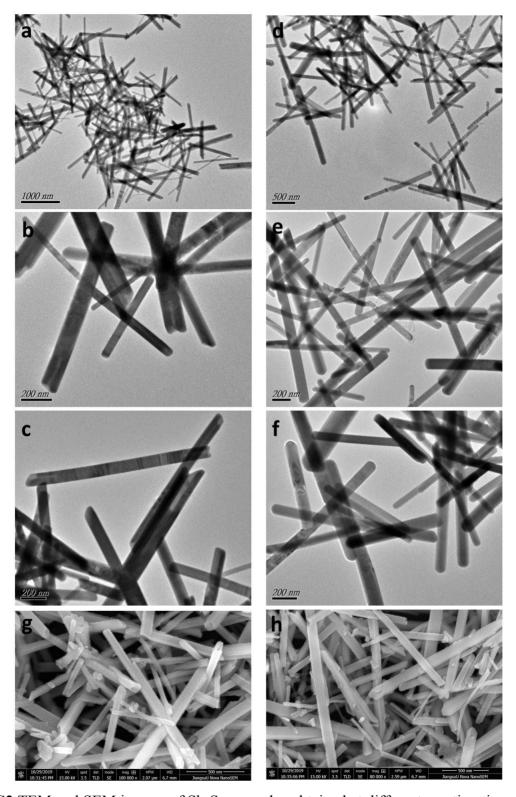
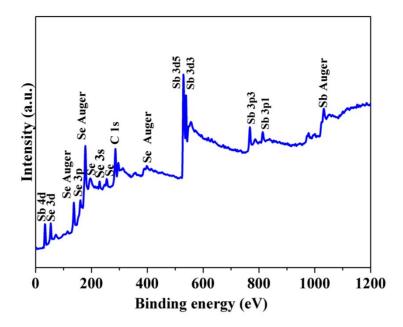
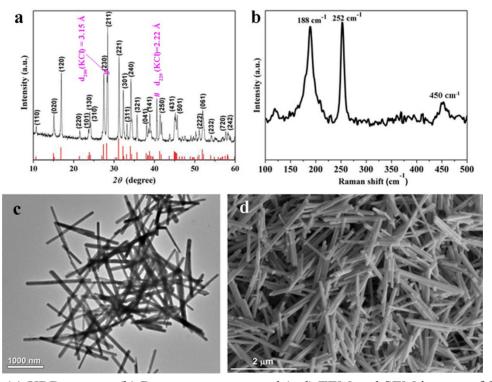
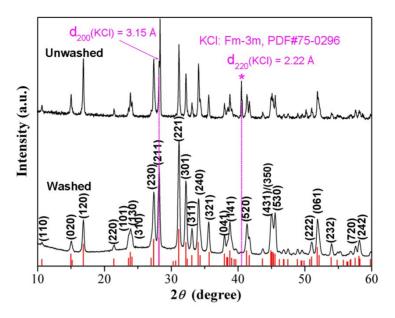
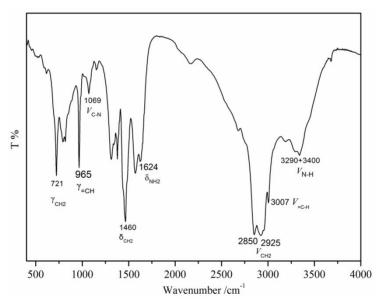
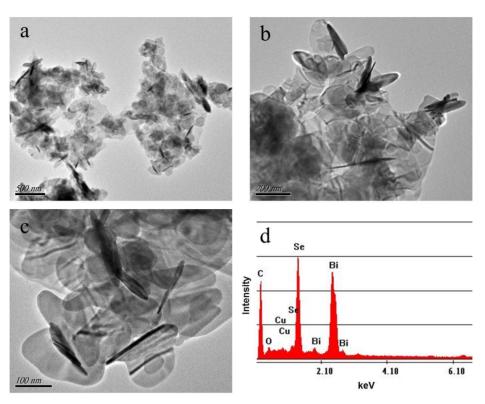



Fig. S2 TEM and SEM images of  $Sb_2Se_3$  samples obtained at different reaction times: (a-c) TEM, 20 min; (d-f) TEM, 40 min; (g,h) SEM, 20 min.



Fig. S3 XPS survey spectrum of  $Sb_2Se_3$  nanorods prepared with the 1:2 molar ratio of  $SbCl_3/KSeCN$ .




**Fig. S4** (a) XRD pattern, (b) Raman spectrum, and (c,d) TEM and SEM images of  $Sb_2Se_3$  NRs prepared with the 1:3 molar ratio of  $SbCl_3/KSeCN$ . The diffractions due to KCl are present in the XRD pattern, since the sample was not washed with ethanol/water.



**Fig. S5** XRD patterns for the Sb<sub>2</sub>Se<sub>3</sub> samples (prepared at 1:2 SbCl<sub>3</sub>/KSeCN) washed and unwashed with ethanol/water, respectively. The diffraction peaks from KCl, which is formed as a side product of **Reaction (4)** shown in the main text, are detected in the unwashed sample (Top). However, these peaks disappear after the sample is washed with ethanol/water (Bottom) because KCl is highly soluble in water.



**Fig. S6** FT-IR spectrum of liquid-state reaction solution obtained after the synthesis of Sb<sub>2</sub>Se<sub>3</sub> nanorods at 200 °C for 1 h. The IR active vibration peaks for OLA [cis-9-Octadecenylamine;  $CH_3(CH_2)_7CH=CH(CH_2)_7CH_2NH_2$ ] can be clearly assigned, while the characteristic peak (often appearing at ~2190 cm<sup>-1</sup>) for C≡N bonds is not detected.



**Fig. S7** TEM and EDS results of  $Bi_2Se_3$  nanosheets prepared using KSeCN as a Se source (BiCl<sub>3</sub>/KSeCN = 0.5 mmol : 1 mmol; 200 °C, 1 h, 10 mL OLA).