Electronic Supplementary Information (ESI) for

Functional Groups Induced Structure Diversities, Photocatalytic, Magnetic and Luminescence Sensing Properties of Four Cobalt(II) Coordination Polymers Based on 1,3,5-Tris(2-methylimidazol-1-yl)benzene

Jun Wang,*a Ning-Ning Chen, a Chen Zhang, Li-Yong Jiaa and Liming Fan*b

^aSchool of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China. ^bDepartment of Chemistry, College of Science, North University of China, Taiyuan 030051, China.

E-mail: wjyctu@hotmail.com; limingfan@nuc.edu.cn.

Table of Contents

Table S1 Crystal data and structure refinement parameters of 1–4	3
Table S2 Selected bond lengths (Å) and angles (°) for 1–4.	4
Table S3 N-H···O hydrogen bonds in 2	5
Table S4 Hydrogen bonds in 3	5
Table S5 Hydrogen bonds in 4	5
Table S6 Standard deviation and detection limit calculation for Fe^{3+} and $Cr_2O_7^{2-}$ ions in 1	5
Table S7 Standard deviation and detection limit calculation for Fe^{3+} and $Cr_2O_7^{2-}$ ions in 2	5
Table S8 Standard deviation and detection limit calculation for Fe^{3+} and $Cr_2O_7^{2-}$ ions in 3	5
Table S9 Standard deviation and detection limit calculation for Fe^{3+} and $Cr_2O_7^{2-}$ ions in 4	6
Table S10 Comparison of various MOFs sensors for the detection of Fe^{3+} and $Cr_2O_7^{2-}$ ions	7
Scheme S1 The coordination modes of functional H ₂ IPA in 1-4	8
Fig. S1 The IR spectra of 1-4	9
Fig. S2 The 1D [Co ₃ (timb) ₂] _n polymeric loop chain in 1	9
Fig. S3 The 3D supramolecular structure of 2	9
Fig. S4 The crab shape [Co ₅ (OH-IPA) ₄] motif in 3	10
Fig. S5 The 3D supramolecular structure of 3	10
Fig. S6 PXRD patterns of 1-4	10
Fig. S7 TGA curves for 1–4	11
Fig. S8 Fluorescence response of $1(a)$, $2(b)$, $3(c)$ and $4(d)$ toward different metal cations in H ₂ O solution	11
Fig. S9 Variation of luminescence intensities of 1(a), 2(b), 3(c) and 4(d) titrated with Fe(NO ₃) ₃	11
Fig. S10 Stern–Volmer plots of Fe ³⁺ in 1(a), 2(b), 3(c) and 4(d)	12
Fig. S11 Emission spectra of $1(a)$, $2(b)$, $3(c)$ and $4(d)$ with different mixed cations solution added Fe ³⁺ ion	s (10 ⁻² M)
	12
Fig. S12 Fluorescence response of $1(a)$, $2(b)$, $3(c)$ and $4(d)$ toward different anions in H ₂ O solution	12
Fig. S13 Variation of luminescence intensities of 1 (a), 2 (b), 3 (c) and 4 (d) titrated with Na ₂ Cr ₂ O ₇	13

Fig. S14 Stern–Volmer plots of $Cr_2O_7^{2-}$ in 1(a), 2(b), 3(c) and 4(d)	13
Fig. S15 Emission spectra of $1(a)$, $2(b)$, $3(c)$ and $4(d)$ with different mixed cations solution added $Cr_2O_7^{2-}$	ions (10-2
M)	14
Fig. S16 UV-vis spectra of Fe^{3+} (blue) and $Cr_2O_7^{2-}$ (magenta) in H ₂ O solutions, and the excitation and	emission
spectra of 1 (a), 2 (b), 3 (c) and 4 (d)	14
Fig. S17 The solid state diffuse-reflectance spectra for the 1-4	15
Fig. S18 Kubelka–Munk-transformed diffuse reflectance spectra of 1-4	15
Fig. S19 M vs. H plots at 1.8 K for 1-4	15

СР	1	2	3	4
Formula	C68H58Br4C04N12O21	C17H22CoN4O8	C ₁₁₂ H ₁₁₀ Co ₅ N ₂₈ O ₃₀	C ₅₂ H ₆₂ Co ₃ N ₁₂ O ₂₄ S ₂
Formula weight	1934.61	469.31	2622.91	1480.04
Crystal system	Monoclinic	Orthorhombic	Orthorhombic	Monoclinic
Space group	C2/c	Ama2	$Pmn2_1$	C2/c
a (Å)	32.816(12)	33.563(19)	52.460(7)	19.470(3)
b (Å)	9.466(5)	12.204(4)	7.2110(10)	11.530(15)
<i>c</i> (Å)	33.049(13)	10.119(4)	19.470(3)	29.730(4)
α (°)	90	90	90	90
β (°)	118.73(3)	90	90	107.150(9)
γ (°)	90	90	90	90
$V(Å^3)$	9002(7)	4145(3)	7365.3(18)	6377(8)
Ζ	8	8	2	4
D_{calcd} (Mg/m ³)	1.361	1.273	1.166	1.391
$\mu(\text{mm}^{-1})$	2.560	0.854	0.621	0.908
Temperature (K)	293(2)	293(2)	173(2)	293(2)
F(000)	3664	1624	2666	2732
$R_{\rm int}$	0.0651	0.0333	0.0246	0.0674
$R_1 [I > 2\sigma(I)]^a$	0.0338	0.0374	0.0352	0.0803
$\mathrm{wR}_2 \left[I > 2\sigma(I)\right]^{\mathrm{b}}$	0.0780	0.1016	0.0700	0.1981
Gof	1.044	1.057	1.099	1.174

Table S1 Crystal data and structure refinement parameters of 1-4

 $R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \ \omega R_{2} = \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]^{1/2}$

 Table S2 Selected bond lengths (Å) and angles (°) for 1–4

CP 1							
Co(1)-O(1)	2.394(2)	Co(1)-O(2)	2.0154(18)	Co(1)-N(1)	2.058(2)	Co(1)-O(1)#1	2.394(2)
$Co(1)-O(2)^{\#1}$	2.0155(18)	$Co(1)-N(1)^{\#1}$	2.058(2)	Co(2)-O(3)	2.0636(16)	Co(2)-O(5)	2.0037(16)
Co(2)-O(3)#2	2.0635(16)	Co(2)-O(5)#2	2.0038(16)	Co(2)-O(8)#3	2.1749(17)	Co(2)-O(8) ^{#4}	2.1749(17)
Co(3)-O(4)	2.0788(17)	Co(3)-O(6)#2	2.0868(17)	Co(3)-O(8)#3	2.0880(16)	Co(3)-N(4)#6	2.125(2)
Co(3)-N(6)#5	2.072(2)						
O(1)-Co(1)-O(1) ^{#1}	94.21(13)	O(2)-Co(1)-O(1)	58.57(8)	O(2)-Co(1)-O(1) ^{#1}	91.75(8)	O(2)-Co(1)-O(2)#1	137.73(11)
O(2)-Co(1)-N(1)	116.64(8)	O(2)-Co(1)-N(1)#1	92.87(8)	O(2) ^{#1} -Co(1)-O(1)	91.75(8)	O(2)#1-Co(1)-O(1)#1	58.57(8)
$O(2)^{\#1}-Co(1)-N(1)$	92.87(8)	N(1)-Co(1)-O(1)	175.10(7)	N(1)-Co(1)-O(1) ^{#1}	86.81(10)	N(1)-Co(1)-N(1)#1	92.57(13)
N(1)#1-Co(1)-O(1)	86.81(10)	N(1)#1-Co(1)-O(1)#1	175.10(7)	O(2)#1-Co(1)-N(1)#1	116.64(8)	O(3)-Co(2)-O(8)#3	90.02(7)
O(3)-Co(2)-O(8)#4	89.98(7)	O(3)#2-Co(2)-O(8)#3	89.98(7)	O(3)#2-Co(2)-O(8)#4	90.02(7)	O(5)-Co(2)-O(3)	84.63(6)
O(5)-Co(2)-O(3)#2	95.37(6)	O(5)-Co(2)-O(8)#3	91.53(6)	O(5)-Co(2)-O(8)#4	88.47(6)	O(5) ^{#2} -Co(2)-O(3)	95.37(6)
O(5)#2-Co(2)-O(3)#2	84.63(6)	O(5)#2-Co(2)-O(8)#3	88.47(6)	O(5)#2-Co(2)-O(8)#4	91.53(6)	O(4)-Co(3)-O(6)#2	101.75(7)
O(4)-Co(3)-O(8)#3	86.40(7)	O(4)-Co(3)-N(4)#6	170.29(7)	O(6)#2-Co(3)-O(8)#3	105.46(6)	O(6)#2-Co(3)-N(4)#6	87.85(7)
O(8)#3-Co(3)-N(4)#6	89.64(7)	N(6)#5-Co(3)-O(4)	83.92(7)	N(6)#5-Co(3)-O(6)#2	91.06(7)	N(6)#5-Co(3)-O(8)#3	162.27(7)
N(6)#5-Co(3)-N(4)#6	97.50(8)						
Symmetry codes: #1 -x,	, y, -z+1/2; #2	-x+1/2, -y+1/2, -z+1/2; #	#3 -x+1/2, -y+3	3/2, -z+1/2; #4 x, y-1, z; #	5 x+1/2, y+1/2,	, z+1/2; #6 -x+1/2, -y-1/2	, -z+1/2.
CP 2							
Co(1)-O(4)	2.011(4)	Co(1)-N(2)	2.031(3)	Co(1)-O(2)#1	2.002(4)	Co(1)-N(1)#2	2.093(3)
O(4)-Co(1)-N(2)	117.94(19)	O(4)-Co(1)-N(1)#2	107.11(17)	N(2)-Co(1)-N(1)#2	115.58(12)	$O(2)^{\#1}-Co(1)-O(4)$	95.05(10)
$O(2)^{\#1}-Co(1)-N(2)$	114.36(19)	O(2)#1-Co(1)-N(1)#2	104.19(17)				
Symmetry codes: #1 x,	y, z+1; #2 x, y	+1/2, $z+1/2$.					
CP 3	<u>, , , , , , , , , , , , , , , , , , , </u>	,					
Co(1)-O(1)	2.105(2)	Co(1)-O(2)	2.267(2)	Co(1)-O(6)	2.260(2)	Co(1)-O(7)	2.085(2)
Co(1)-N(2)	2.055(2)	Co(1)-N(6) ^{#2}	2.060(3)	Co(2)-O(4)	1.983(2)	Co(2)-O(3)	2.330(2)
Co(2)-N(8)	2.017(3)	$Co(2)-N(4)^{\#3}$	2.081(3)	Co(2)-N(14)#4	2.085(3)	Co(3)-O(8)	2.022(2)
Co(3)-O(8)#1	2.022(2)	Co(3)-N(10)	2.062(4)	Co(3)-N(12)	1.978(4)		
O(1)-Co(1)-O(6)	93.37(8)	O(1)-Co(1)-O(2)	59.89(8)	O(6)-Co(1)-O(2)	85.67(8)	O(7)-Co(1)-O(2)	92.96(8)
O(7)-Co(1)-O(1)	144.52(8)	O(7)-Co(1)-O(6)	59.84(7)	N(2)-Co(1)-O(2)	90.50(9)	N(2)-Co(1)-O(1)	106.22(9)
N(2)-Co(1)-O(6)	154.76(9)	N(2)-Co(1)-O(7)	95.55(9)	N(2)-Co(1)-N(6)#2	103.27(10)	N(6)#2-Co(1)-O(1)	93.47(10)
N(6)#2-Co(1)-O(2)	152.80(9)	N(6)#2-Co(1)-O(6)	90.98(9)	N(6)#2-Co(1)-O(7)	108.63(9)	O(4)-Co(2)-O(3)	60.02(8)
O(4)-Co(2)-N(8)	110.31(10)	O(4)-Co(2)-N(4)#3	122.91(10)	O(4)-Co(2)-N(14)#4	100.99(10)	N(8)-Co(2)-N(4)#3	114.14(11)
N(8)-Co(2)-N(14)#4	104.15(10)	N(8)-Co(2)-O(3)	83.87(9)	N(4)#3-Co(2)-O(3)	91.00(9)	N(4)#3-Co(2)-N(14)#4	100.98(11)
N(14)#4-Co(2)-O(3)	161.01(9)	O(8)-Co(3)-O(8)#1	108.51(12)	O(8)-Co(3)-N(10)	95.77(9)	N(12)-Co(3)-O(8)	104.24(9)
N(12)-Co(3)-N(10)	145.17(16)	N(12)-Co(3)-O(8)#1	104.24(9)	O(8) ^{#1} -Co(3)-N(10)	95.77(9)		
Symmetry codes: #1 -x.	, y, z; #2 -x+1/	2, -y, z+1/2; #3 -x+1/2, -	-y, z-1/2; #4 x,	y, z-1.	()		
CP 4	,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>, , ,</i>				
Co(1)-O(2)	1.924(5)	Co(1)-N(1)	1.999(5)	Co(1)-N(3)#1	2.004(5)	Co(1)-N(6)#2	2.014(5)
$C_0(2)-O(3)$	2.194(7)	$C_{0}(2)-O(4)$	2.117(5)	Co(2)-O(8)	2.043(8)	$Co(2)-O(3)^{\#3}$	2.194(7)
$Co(2)-O(4)^{\#3}$	2.117(5)	$Co(2)-O(8)^{\#3}$	2.043(8)			()-(-)	
O(2)-Co(1)-N(1)	118.2(2)	$O(2)-Co(1)-N(3)^{\#1}$	115.6(2)	O(2)-Co(1)-N(6)#2	103.8(2)	N(1)-Co(1)-N(3)#1	110.8(2)
$N(1)-Co(1)-N(6)^{\#2}$	105.8(2)	$N(3)^{\#1}-Co(1)-N(6)^{\#2}$	100.1(2)	O(4)-Co(2)-O(3)	61.3(2)	O(8)-Co(2)-O(3)	89.9(4)
$O(4)-Co(2)-O(3)^{\#3}$	118.7(2)	$O(4)^{\#3}$ -Co(2)-O(3)	118.7(2)	$O(4)^{\#3}$ -Co(2)-O(3) ^{#3}	61.3(2)	O(8)-Co(2)-O(4)	91.8(3)
$O(8)-Co(2)-O(3)^{\#3}$	90.1(4)	$O(8)-Co(2)-O(4)^{\#3}$	88.2(3)	$O(8)^{\#3}$ -Co(2)-O(3)	90.1(4)	$O(8)^{\#3}$ -Co(2)-O(4)	88.2(3)
$O(8)^{\#3}$ - $Co(2)$ - $O(3)^{\#3}$	89 9(4)	$O(8)^{\#3}$ -Co(2)-O(4) ^{#3}	91.8(3)		20.1(1)		00.2(0)
Symmetry codes: #1 x-	1/2v. z: #2 x	. v-1. z: #3 -x+1v -z+	1.				
	, ,, , =	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

Table S3 N-H···O hydrogen bonds in 2

D-H···A	d(H···A)/Å	d(D···A)/Å	∠(D–H···A)/°
N1-H1AA…O2	2.26	3.013(6)	142
N1-H1AB…O4	2.23	2.980(6)	141

Table S4 Hydrogen bonds in 3

D-H···A	d(H···A)/Å	d(D…A)/Å	∠(D–H···A)/°
O5-H5B…O2	1.95	2.719(3)	149
O10-H10C…O6	1.93	2.719(3)	154
C23-H23…O14	2.22	3.095(5)	152
C26-H26B…O14	2.47	3.302(5)	142
C31-H31O13	2.45	3.255(5)	143
С37-Н37…О11	2.53	3.179(4)	126
С39-Н39…О11	2.40	3.264(4)	151
С52-Н52…О8	2.56	3.239(6)	129

Table S5 Hydrogen bonds in 4

D-H···A	d(H···A)/Å	d(D···A)/Å	∠(D–H…A)/°
O8-H8A…O4	2.48	2.989(13)	115
O8-H8B…O3	2.51	2.997(12)	125
С3-Н3…Об	2.46	2.840(13)	105
С9-Н9С…О6	2.39	3.262(15)	152
C14-H14…O6	2.23	3.160(11)	174
С23-Н23А…О2	2.41	3.262(10)	147

Table S6 Standard deviation and detection limit calculation for Fe^{3+} and $Cr_2O_7^{2-}$ ions in 1

	Fe ³⁺	$Cr_2O_7^{2-}$
1	513.265040	563.914565
2	513.471239	564.081221
3	513.134660	564.133767
4	513.378433	563.781261
5	513.026512	563.691778
Standard deviation (σ)	0.17943	0.18911
Ksv	1.79 ×10 ⁴	6.93×10 ⁴
Detection limit (3 σ /Ksv)	3.01×10 ⁻⁵	8.19×10 ⁻⁶

Table S7 Standard deviation and	d detection limit calculation	for Fe^{3+} and $Cr_2O_7^{2-}$ ions in 2
---------------------------------	-------------------------------	--

	Fe ³⁺	Cr ₂ O ₇ ^{2–}
1	612.832667	606.678864
2	612.512144	606.831673
3	612.475613	606.412354
4	612.981578	606.521328
5	612.523456	606.971256
Standard deviation (σ)	0.20377	0.20229
Ksv	1.18×10^{4}	1.36×10 ⁴
Detection limit (3 σ /Ksv)	5.18×10-5	4.46×10 ⁻⁵

Table S8 Standard deviation and detection limit calculation for Fe^{3+} and $Cr_2O_7^{2-}$ ions in **3**

	Fe ³⁺	$Cr_2O_7^{2-}$
1	562.047724	553.597770
2	562.178166	553.816231
3	562.423372	553.371456
4	561.945513	553.751585
5	562.321121	553.401584
Standard deviation (σ)	0.19467	0.20037

Ksv	1.51 ×10 ⁴	3.59×10 ⁴
Detection limit (3o/Ksv)	3.87×10 ⁻⁵	1.67×10 ⁻⁵

Table S9 Standard deviation and detection limit calculation for Fe^{3+} and $Cr_2O_7^{2-}$ ions in 4

	Fe ³⁺	$Cr_2O_7^{2-}$
1	476.947351	490.607439
2	476.574783	490.412231
3	476.999332	490.491132
4	477.052179	490.556216
5	476.792177	490.916735
Standard deviation (σ)	0.19304	0.19323
Ksv	1.14×10^{4}	1.27×10^4
Detection limit (3o/Ksv)	5.08×10 ⁻⁵	4.56×10 ⁻⁵

	Analyte	MOFs-based fluorescent Materials	Quenching constant (K _{SV} , M ⁻¹)	Detection Limits (DL)	Media	Ref
1		[Mg ₂ (APDA) ₂ (H ₂ O) ₃]·5DMA·5H ₂ O	$2.06 imes 10^4$	152 ppb	DMF	38
2		${Eu_2L_3(DMF)} \cdot 2DMF$	$4 imes 10^4$	6.62 μM	H ₂ O	39
3	Fe ³⁺	[Ag(CIP ⁻)]	7.1×10^{3}	$1.2 \times 10^{-6} \text{ M}$	H ₂ O	40
4	4 5	$[Zn(ACA)_4] \cdot CB[6] \cdot [NH_2(CH_3)_2] \cdot 8H_2O$	$1.088 imes 10^4$	$9.5 \times 10^{-7} \mathrm{M}$	H ₂ O	41
5		$\{[Eu_2(L)_2(H_2O)_2] \cdot 5H_2O \cdot 6DMAC\}_n$	5941 M	10 ⁻⁵ mM	H ₂ O	42
1		[H ₂ N(CH ₃) ₂] ₂ [Zn ₂ L(HPO ₃) ₂]	4.44 ×10 ⁴	1.09×10^{-3} mM	H ₂ O	43
2		$[Tb(ppda)(bdc)_{0.5}(C_2H_5OH)(H_2O)]_n$	4.03×10^3	$5.0 imes 10^{-5} \mathrm{M}$	DMF	44
3		$ \{ [(CH_3)_2NH_2]_2 [Zn_5 (TDA)_4TZ)_4] \\ \Box 4DMF \}_n $	6.77×10^{3}	7.48 μ mol L ⁻¹	H ₂ O	45
4	Cr ₂ O ₇ ²⁻	$[Cd_3(cpota)_2(phen)_3]_n \cdot 5nH_2O$	1.21×10^{4}	$3.70 \times 10^{-7} \text{ M}$	H ₂ O	46
5		$[Zn(NH_2-bdc)(4,4'-bpy)]$	7.62×10^{3}	1.30 µM	H ₂ O	47
6		${[Cd_2L_2(H_2O)_4] \cdot H_2O}_n$	1.25×10^{4}	3.7 µM	H ₂ O	19
7		${[Zn_2L_2(H_2O)_4] \cdot H_2O\}_n}$	1.77×10^{4}	2.6 µM	H ₂ O	40

Table S10 Comparison of various MOFs sensors for the detection of Fe^{3+} and $Cr_2O_7^{2-}$ ions

H₂APDA= 4,4'-(4-aminopyridine-3,5-diyl)dibenzoic acid;

L=(6-[1-(4-carboxyphenyl)-1H-1,2,3-triazol-4-yl]nicotinic acid;

HCIP = 4-(4-carboxylphenyl)-2,6-di(4-imidazol-1-yl)phenyl)pyridine;

CB[6]=cucurbit[6]uril, HACA = anthracene-9-carboxylic acid;

 $H_3L = 4,4'-(((5-carboxy-1,3-phenylene)bis(azanediyl))bis(carbonyl))$ dibenzoic acid, DMAC = N,N'-dimethylacetamide

 $H_2L=2',3',5',6'$ -tetramethyl-[1,1':4',1"-terphenyl]-4,4"-dicarboxylic acid;

H₂ppda=4-(pyridin-3-yloxy)-phthalic acid, H₂bdc=terephthalic acid;

H₂TDA = thiophene-2,5-dicarboxylic acid, HTZ = 1H-1,2,4-Triazole;

 H_3 cpota = 2-(4-carboxyphenoxy)terephthalic acid, phen = 1,10-phenanthroline;

 $NH_2-H_2bdc = 2$ -amino-1,4-benzenedicarboxylic acid, 4,4'-bpy = 4,4'-bipyridine;

 $H_2L = 5-(1H-1,2,4-triazol-1-yl)$ isophthalic acid).

Scheme S1 The coordination modes of functional $\mathrm{H_{2}IPA}$ in 1-4

Fig. S1 The IR spectra of 1-4

Fig. S2 The 1D $[Co_3(timb)_2]_n$ polymeric loop chain in 1

Fig. S3 The 3D supramolecular structure of 2

Fig. S4 The crab shape $[Co_5(OH-IPA)_4]$ motif in 3

Fig. S5 The 3D supramolecular structure of 3

Fig S6 PXRD patterns of 1-4

Fig S8 Fluorescence response of 1(a), 2(b), 3(c) and 4(d) toward different metal cations in H₂O solution

Fig S9 Variation of luminescence intensities of 1(a), 2(b), 3(c) and 4(d) titrated with Fe(NO₃)₃

Fig S10 Stern–Volmer plots of Fe³⁺ in 1(a), 2(b), 3(c) and 4(d)

Fig S11 Emission spectra of 1(a), 2(b), 3(c) and 4(d) with different mixed cations solution added Fe³⁺ ions (10⁻² M)

Fig S12 Fluorescence response of 1(a), 2(b), 3(c) and 4(d) toward different anions in H₂O solution

Fig S13 Variation of luminescence intensities of 1(a), 2(b), 3(c) and 4(d) titrated with Na₂Cr₂O₇

Fig S14 Stern–Volmer plots of $Cr_2O_7^{2-}$ in 1(a), 2(b), 3(c) and 4(d)

Fig S15 Emission spectra of 1(a), 2(b), 3(c) and 4(d) with different mixed cations solution added $Cr_2O_7^{2-}$ ions (10⁻² M)

Fig. **S16** UV-vis spectra of Fe³⁺ (blue) and $Cr_2O_7^{2-}$ (magenta) in H₂O solutions, and the excitation and emission spectra of 1(a), 2(b), 3(c) and 4(d)

Fig S17 The solid state diffuse-reflectance spectra for the 1-4

Fig S18 Kubelka–Munk-transformed diffuse reflectance spectra of 1-4

Fig. S19 M vs. H plots at 1.8 K for 1-4.