Supporting Information

A microporous zinc–organic framework with Lewis basic pyridyl sites for highly selective C_2H_2/CH_4 and C_2H_2/CO_2 gas separation

Peng Yan^{a,b}, Jucai Yang^{a,*}, Xiangying Hao^b, Zhisheng Chen^b, Guanhua Shen^b, Yanhua Zhao^b, Deyun Ma^{c,*}and Jiaxin Zhu^d

^aSchool of Chemical Engineering, Inner Mongolia University of Technology and Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, P. R. China. E-mail:yangjc@imut.edu.cn.

^bSchool of Environmental and Chemical Engi-neering, Zhaoqing University, Zhaoqing 526061, P. R. China.

^cSchool of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, P. R. China. E-mail: <u>mady@zqu.edu.cn</u>

^dDepartment of Chemistry, Fudan University, Shanghai 200433, P. R. China.

Figure S1. Themogravimetric curves for 1 and 1a.

Figure S2. C₂H₂, CO₂, CH₄, CO and N₂ isotherms of 1a fitted by LF model at 273 K.

Figure S3. C_2H_2 , CO_2 , CH_4 , CO and N_2 isotherms of 1a fitted by LF model at 298 K.

Fig. S4. IAST-predicted selectivities for $C_2H_2/CH_4(50:50)$, $C_2H_2/CO_2(50:50)$, CO_2/N_2 (15:85), $CO_2/CO(1:2)$ and CO_2/CH_4 (50:50) mixtures on 1a at 273 K.

Figure S5. IR spectra of 1.

Figure S6. The reusability of 1a for CO₂ adsorption.

1

2

3

Frequency of use

5

4

6

1.0

0.5

0.0

Figure S7. Variable-temperature PXRD patterns for 1.

Figure S8. PXRD patterns for 1 exposed to humid air for 1, 2, and 5 days.

Figure S9. The BET surface area plot of 1a.

Figure S10. The DFT-calculated adsorption configurations of C_2H_2 in the channel. (Zinc, carbon, oxygen, nitrogen, and hydrogen atoms are in slateblue, gray, red, blue, and white, respectively.)

1				
Zn(1)-O(1)	1.939(3)	Zn(1)-N(1)	2.045(3)	
Zn(1)-O(6) ⁱⁱ	1.940(3)	$Zn(1)-O(5)^{i}$	1.982(3)	
$Zn(2)-O(2)^{i}$	2.110(6)	Zn(2)-O(3) ⁱⁱⁱ	2.058(6	
Zn(2)-O(4) ⁱⁱⁱ	2.134(6)	$N(1)$ - $Zn(1)$ - $O(5)^{i}$	104.37(13)	

Table S1 Selected bond lengths (Å) and bond angles (°) for 1.

$O(6)^{ii}$ -Zn(1)-O(5) ⁱ	123.65(15)	O(1)-Zn(1)-N(1)	99.21(13)	
O(1)-Zn(1)-O(5) ⁱ	111.99(15)	O(1)-Zn(1)-O(6) ⁱⁱ	115.15(12)	
$O(6)^{ii}$ -Zn(1)-N(1)	96.87(13)	$O(3)^{iii}$ -Zn(2)-O(2) ⁱⁱ	151.0(3)	
$O(2)^{ii}$ -Zn(2)-O(2) ⁱ	112.8(4)	$O(2)^{i}$ -Zn(2)-O(4) ⁱⁱⁱ	91.3(2)	
$O(3)^{iii}$ -Zn(2)-O(2) ⁱ	93.3(3)	O(3) ⁱⁱⁱ -Zn(2)-O(3)	65.2(4)	
O(3) -Zn(2)-O(4)	86.2(3)	O(4) ⁱⁱⁱ -Zn(2)-O(4)	150.9(4)	
Symmetry codes: i = x, 1-y, 1.5+z; ii = 0.5-x, 0.5+y, z; iii = 1.5-x, 0.5-y, 1.5+z.				

Table S2 Fitting parameters of the Langmuir-Freundlich modle at 273 K.

Parameters			1		
	C_2H_2	CO_2	CH ₄	СО	N ₂
q _m	4.9159	5.2880	3.2623	2.4980	1.6150
k	0.1423	0.0199	0.0071	0.0019	0.0017
n	0.7072	1.0001	0.9929	1.0419	1.0868
R ²	0.9995	0.9999	1	0.9999	0.9999

 Table S3 Fitting parameters of the Langmuir-Freundlich modle at 298 K.

Parameters	1				
	C_2H_2	CO_2	CH ₄	CO	N ₂
q _m	4.4688	5.0619	3.0861	2.0099	1.2232
k	0.0585	0.0079	0.0030	0.0010	0.0011
n	0.8074	0.9967	1.0197	1.0792	1.1840
\mathbb{R}^2	0.9996	0.9999	0.9999	0.9999	0.9999

The method for calculation of gas selectivity:

The ideal adsorbed solution theory (IAST) developed by Myers and Praunitz [1]. From the IAST, the spreading pressure π is expressed as follows:

$$\pi_{i}^{0}(p_{i}^{0}) = \frac{RT}{A} \int_{0}^{p_{i}^{0}} \frac{q_{i}}{p} dp \quad (1)$$
$$\pi_{i}^{*} = \frac{\pi_{i}^{0}A}{RT} = \int_{0}^{p_{i}^{0}} \frac{q_{i}}{p} dp \quad (2)$$

where π and π^* are the spreading pressure and the reduced spreading pressure, separately. A is the specific surface area of the adsorbent. p_i^0 is the gas pressure of component *i* that corresponding to the spreading pressure π of the gas mixture.

At a constant temperature, the spreading pressure of single component is the same:

$$\pi_1^* = \pi_2^* = \dots = \pi_n^*$$
 (3)

For binary adsorption of component i, the IAST requires:

$$Py_i = p_i^0 x_i \quad (4)$$

where y_i and x_i are the molar fractions of component i in the gas phase and in the adsorbed phase, respectively. *P* is the total gas pressure, p_i^0 is the pressures of component i at the same spreading pressure as that of the mixture.

The adsorption isotherm of the pure component was fitted with a certain adsorption model to obtain the corresponding parameters. Then use formula (2) to get the specific spreading pressure expression. Finally, the x_i corresponding to a given total pressure P and the composition of y_i in the gas mixture is obtained according to formula (3) and (4).

Thus, adsorption selectivity S of a binary mixture is defined as:

$$S = \frac{\frac{x_1}{y_1}}{\frac{x_2}{y_2}}$$
(5)

The method for calculation of isosteric heat of adsorption:

The relationship between adsorption heat and temperature and pressure can be obtained by integrating the Clausius-Clapeyron equation as follows:

$$\ln p = -\frac{Q_{st}}{RT} + C$$

Using the adsorption isotherm data at different temperatures to draw a graph, the isosteric heat of adsorption can be obtained according to the slope of the straight line.

Density-Functional Theory Calculations:

To obtain the gas binding energies, we use the DMOL3 to calculate the energy for the system, framework and gas molecule. The static binding energy was then calculated by using: $EB = (E_{(MOF)}+Eg_{(gas)})-E_{(MOF+gas)}$.^{2,3}

[1] A. Myers, J.M. Prausnitz, Thermodynamics of mixed-gas adsorption, *AIChE. J.*, 1965, **11**, 121-127.

[2] DMol3, v. Accelrys, Inc, San Diego, 2005.

[3] Babarao, R.; Jiang, J. J. Phys. Chem. C, 2009, 113, 18287-18291.