Electronic Supplementary Information

Synthesis, structure, and photoluminescence properties of coordination polymers of 4,4',4'',4'''-tetrakiscarboxyphenylsilane and 3,5-bis(1',2',4'-triazol-1'-yl) pyridine

Jing Sun^a, Tao Zhou^a, Dalong Pan^a, Xinzhu Zhang^a, Yuying Wang^a, Yao-Cheng Shi^a, Huaguang Yu^{a,b,*}

 ^a College of Physics Science and Technology, and College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
^b School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, P. R. China

Preprint submitted to CrystEngComm

^{*}Corresponding author. Tel.: +86-514-87975466; fax: +86-514-87975467. *Email address:* hgyu@yzu.edu.cn (Huaguang Yu)

Contents

1	Material and methods	$\mathbf{S5}$
2	The crystal structure of compound 1	$\mathbf{S6}$
3	The crystal structure of compound 2	S 11
4	The crystal structure of compound 3	S16
5	PXRD, IR and TG	S26
6	The photoluminescence properties of compound 3	S29

List of Tables

S1	Selected bond lengths (Å) for compound $1 \dots S7$
S2	Selected angles (°) for compound $1 \dots $
S3	Selected bond lengths (Å) for compound 2
S4	Selected angles (°) for compound 2
S5	Hydrogen bonding interactions between the 3D motif and the
	1D motif in the structures of compound 2
S6	Selected bond lengths (Å) for compound 3
S7	Selected angles (°) for compound 3
S8	Hydrogen bonding interactions between the 3D motif and the
	1D motif in the structures of compound 3
S9	ICP-AES analysis results for $3\text{-}\mathrm{Fe}(\mathrm{NO}_3)_3$ and $3\text{-}\mathrm{Cu}(\mathrm{NO}_3)_2$ S29

List of Figures

S1	The 1D chain of Co2 and Co3 bridged by btap ligands in
	compound 1
S2	(a) Coordination environments (at 50 % probability level) of
	Cd(II)1, $Cd(II)2$ and $Cd(II)3$ centers in compound 3 . The
	hydrogen atoms and crystal water molecules are omitted for
	clarity. Symmetry codes for the generated atoms: $\#1: -1 +$
	X, 1 + Y, +Z; #2: -1/2 + X, -1/2 - Y, -1/2 + Z; #3: 1/2
	+ X, -1/2 - Y, -1/2 + Z; #4: -1/2 + X, -1/2 - Y, 1/2 +
	Z; $\#5: 1 + X, -1 + Y, +Z; \#6: 1/2 + X, -1/2 - Y, 1/2 +$
	Z. (b) The coordination environment of L1 ligands of the 3D
	motif in compound 3 . (c) The 1D cationic motif in compound
	3
S3	Coordination environments of (a) Co1 in compound 2 and (b)
	Cd1 in compound 3
S4	(a) (c) and (e) Perspective view of the 3D network in com-
	pound 3 . (b) (d) and (f) Schematic view of the 3D 3-connected
	framework with the $(10^3)_4$ topology in compound 3 . Color
	code: yellow ball, 3-connected $Htcps^{3-}$ (Htcps-1) node; light
	yellow ball, 3-connected $Htcps^{3-}$ (Htcps-2) node; blue ball, 3-
	connected Cd1 node; light green ball, 3-connected Cd2 node;
	blackish green ball, 2-connected Cd3 node

S5	Experimental powder X-ray diffraction patterns versus sim-	
	ulated powder patterns for compounds (a) 1 , (b) 2 and (c)	
	3	S26
S6	FT-IR spectra of compounds (a) 1 , (b) 2 and (c) 3	S27
S7	TG-DTG curves of compounds (a) 1 , (b) 2 and (c) 3	S28
S8	Luminescence responses of compound 3 toward different con-	
	centrations of acetone in deionized water ($\lambda_{ex} = 290$ nm)	S29
S9	Linear region of fluorescence intensity of 3 in water upon ad-	
	dition of (a) Fe^{3+} (0 – 0.05 mM) and (b) Cu^{2+} (0 – 0.1 mM)	
	in water at $\lambda_{ex} = 290$ nm	S30
S10	UV-Vis adsorption spectra of deionized water suspensions con-	
	taining Fe^{3+} , Cu^{2+} metal ions (10 ⁻³ M) and the emission spec-	
	trum of compound 3 (8 mg) dispersed in deionized water (100	
	mL)	S31
S11	Luminescence responses of compound 3 towards different con-	
	centrations of (a) $Cr_2O_7^{2-}$ and (b) MnO_4^{-} in deionized water	
	$(\lambda_{\rm ex} = 290 \text{ nm}).$	S31

1. Material and methods

Metal nitrates $(M(NO_3)_x \cdot nH_2O)$, 3,5-dibromopyridine $(C_5H_3Br_2N)$, copper oxide (CuO), 1,2,4-triazole ($C_2H_3N_3$), potassium carbonate (K_2CO_3) and potassium hydroxide (KOH) were purchased from Sinopharm Chemical Reagent Corporation. ¹H and ¹³C{¹H} nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AVANCE 600 spectrometer. The electrospray ionization mass spectrum (ESI-MS) was collected on a Bruker maXis mass spectrometer. 3,5-Bis(1',2',4'-triazol-1'-vl) pyridine (btap) was prepared according to the literature method [1] for the synthesis of 1,3bis(1',2',4'-triazol-1'-yl) benzene with some modifications. The solution of 3,5-dibromopyridine (26.8 g, 113 mmol), 1,2,4-triazole (19.5 g, 283 mmol), copper(II) oxide (2.19 g, 28.3 mmol), potassium carbonate (39.1 g, 283 mmol), and DMSO (150 mL) was heated at 150 °C for 48 h. After cooling to room temperature, the mixture was diluted with $1.5 \text{ L CH}_2\text{Cl}_2$, and then filtered through a column of basic alumina. The filtrate was washed with CH_2Cl_2 (500 mL). CH_2Cl_2 was distilled off by rotary evaporation, and a yellow oil liquid was obtained. Saturated NaCl solution was added to it, and a white solid was precipitated. The mixture was filtered through a Buchner funnel, and washed with distilled water for three times. After drying in vacuum an off-white solid was got (19 g, 79 %). ¹H NMR (DMSO- d_6 , 600.2 MHz): δ 9.5 (s, 2H), 9.2 (d, J = 2.3 Hz, 2H), 8.8 (t, J = 2.2 Hz, 1H), 8.4 (s, 2H). ¹³C{¹H} NMR (DMSO- d_6 , 150.9 MHz): δ 153.1, 143.4, 139.4, 133.7, 117.8. FT-IR (KBr pellet, cm^{-1}): 3078 (m), 1811 (w), 1596 (m), 1516 (s), 1412 (w), 1340 (w), 1284 (m), 1221 (s), 1133 (s), 982 (m), 886 (m), 790 (w), 663 (m), 471 (w). ESI-MS: $m/z = 214.0819 [M + H]^+$.

2. The crystal structure of compound 1

Figure S1: The 1D chain of Co2 and Co3 bridged by btap ligands in compound $\mathbf{1}.$

bond	ength (Å)	bond	length (Å)
Co1–O8	1.9567(19)	C31–C32	1.384(3)
Co1–O3#1 ¹	1.9298(19)	C31–C35	1.379(4)
Co1–O2#2 1	1.992(2)	N4-C35	1.338(3)
Co1–O9	1.961(2)	N4-C34	1.338(3)
Co3–N7	2.161(2)	C16–C17	1.383(4)
Co3–N7#3 ¹	2.161(2)	C16–C15	1.506(4)
Co3–O11	2.151(2)	C16–C21	1.385(4)
Co3–O11#3 ¹	2.151(2)	N5-C37	1.339(3)
Co3-O5#4 ¹	2.0323(18)	N5-N6	1.354(3)
Co3-O5#5 ¹	2.0323(18)	C4–C3	1.376(4)
Co2-O7#6 ¹	2.1060(18)	C28–C27	1.379(4)
Co2–O7	2.1060(18)	O1–C1	1.221(4)
Co2–N1#6 ¹	2.1581(19)	C25–C24	1.389(4)
Co2–N1	2.1581(19)	C29–N1	1.313(3)
Co2–O10	2.098(2)	C12–C13	1.392(4)
Co2-O10#6 ¹	2.098(2)	C18–C17	1.384(4)
Si1–C5	1.865(2)	C7–C6	1.379(4)
Si1-C26	1.873(2)	C7–C2	1.384(4)
Si1-C19	1.862(2)	С10-С9	1.374(4)
Si1-C12	1.870(2)	C37–N7	1.312(3)
C5-C4	1.389(3)	C14–C13	1.386(4)
C5-C6	1.399(4)	C14–C9	1.384(4)
N3-C31	1.430(3)	N1-C30	1.356(3)
N3-C29	1.334(3)	C20–C21	1.369(4)
N3-N2	1.367(3)	C3–C2	1.381(4)
O7–C22	1.250(3)	C2-C1	1.488(4)
C26-C25	1.391(3)	C1–O2	1.282(4)
C26-C27	1.397(4)	O6-C15	1.244(4)
C23–C22	1.504(3)	N2-C30	1.305(3)
C23–C28	1.385(4)	N6-C36	1.310(4)
C23–C24	1.379(4)	O4–C8	1.231(4)
C33–C32	1.384(3)	N7-C36	1.349(4)
C33–N5	1.421(3)	C8-C9	1.501(4)
C33–C34	1.374(4)	C8-O3	1.264(3)
C19–C18	1.391(3)	C15–O5	1.255(4)
C19–C20	1.401(4)	O5-Co3#5 ¹	2.0323(18)
O8–C22	1.263(3)	$03-Co1#7^{-1}$	1.9298(19)

Table S1: Selected bond lengths (Å) for compound ${\bf 1}$

Table S1 – continued from previous page

bond	length (Å)	bond	length (Å)		
C11-C12	1.398(3)	02-Co1#8 ¹	1.992(2)		
C11–C10	1.385(4)				
1 #1: -1/2 + X, 1 - Y, -1/2 + Z; #2: -1/2 + X, -1/2 + Y, + Z;					
#3: $3/2 - X$, $1/2 - Y$, $1 - Z$; #4: + X, $1/2 - Y$, $1/2 + Z$;					
#5: 3/2 - X, + Y, 1/2 - Z; #6: 1/2 - X, 1/2 - Y, - Z;					
#7: $1/2 + X$, $1 - Y$, $1/2 + Z$; #8: $1/2 + X$, $1/2 + Y$, $+ Z$.					

Table S2: Selected angles (°) for compound ${\bf 1}$

angle	(°)	angle	(°)
O8-Co1-O2#1 ¹	101.92(10)	O7-C22-O8	124.2(2)
O8-Co1-O9	105.73(10)	O8-C22-C23	115.5(2)
O3#2-Co1-O8 ¹	109.98(9)	C32-C31-N3	118.4(2)
O3#2-Co1-O2#1 ¹	111.64(10)	C35-C31-N3	121.1(2)
O3#2-Co1-O9 ¹	124.30(10)	C35-C31-C32	120.5(2)
O9–Co1–O2#1 ¹	100.78(9)	C34-N4-C35	117.9(2)
N7#3–Co3–N7 1	180.0	C31-C32-C33	116.8(2)
O11#3–Co3–N7 1	91.71(8)	C17-C16-C15	120.0(2)
O11#3–Co3–N7#3 1	88.29(8)	C17-C16-C21	118.9(2)
O11-Co3-N7	88.29(8)	C21-C16-C15	121.1(3)
O11–Co3–N7#3 1	91.71(8)	C37–N5–C33	130.0(2)
O11–Co3–O11#3 ¹	180.0	C37–N5–N6	109.3(2)
O5#4–Co3–N7#3 1	90.39(9)	N6-N5-C33	120.6(2)
O5#5–Co3–N7 1	90.39(9)	C3-C4-C5	121.8(2)
O5#4–Co3–N7 1	89.61(9)	C27-C28-C23	120.2(3)
O5#5–Co3–N7#3 1	89.61(9)	C24-C25-C26	121.4(2)
O5#4-Co3-O11#3 ¹	91.03(8)	N1-C29-N3	110.2(2)
O5#4-Co3-O11 ¹	88.97(8)	C11-C12-Si1	121.01(19)
O5#5-Co3-O11#3 ¹	88.97(8)	C13-C12-Si1	121.45(18)
O5#5-Co3-O11 ¹	91.03(8)	C13-C12-C11	117.5(2)
O5#5-Co3-O5#4 ¹	180.0	C17-C18-C19	121.2(3)
O7–Co2–O7#6 ¹	180.0	C6-C7-C2	120.5(3)
O7#6-Co2-N1#6 ¹	93.75(7)	C9-C10-C11	120.3(2)
$O7\#6-Co2-N1^{-1}$	86.25(7)	N4-C35-C31	122.0(2)
O7-Co2-N1	93.74(7)	C23-C24-C25	120.0(2)
O7–Co2–N1#6 1	86.25(7)	C7-C6-C5	120.9(2)

Table S2 – continued from previous page

angle	(°)	angle	(°)
N1#6-Co2-N1 ¹	180.0	N7-C37-N5	110.3(2)
O10–Co2–O7#6 1	92.73(8)	C9-C14-C13	120.6(3)
O10#6–Co2–O7 ¹	92.73(8)	C14-C13-C12	120.9(2)
O10-Co2-O7	87.27(8)	C29–N1–Co2	129.24(18)
O10#6-Co2-O7#6 ¹	87.27(8)	C29–N1–C30	103.2(2)
O10#6–Co2–N1 1	93.95(8)	C30-N1-Co2	127.29(18)
O10-Co2-N1	86.05(8)	C21-C20-C19	121.7(2)
O10#6-Co2-N1#6 ¹	86.06(8)	C4-C3-C2	120.0(2)
O10–Co2–N1#6 ¹	93.95(8)	C7-C2-C1	119.5(3)
O10-Co2-O10#6 ¹	180.0	C3-C2-C7	119.3(2)
C5-Si1-C26	110.96(11)	C3-C2-C1	121.2(3)
C5–Si1–C12	107.79(10)	O1–C1–C2	120.9(3)
C19-Si1-C5	109.92(11)	O1–C1–O2	122.0(3)
C19–Si1–C26	109.03(11)	O2C1C2	117.0(3)
C19–Si1–C12	108.04(11)	C30-N2-N3	102.5(2)
C12-Si1-C26	111.04(11)	C36–N6–N5	102.5(2)
C4–C5–Si1	120.20(19)	N4-C34-C33	122.8(2)
C4-C5-C6	117.4(2)	C16-C17-C18	120.5(2)
C6–C5–Si1	122.35(18)	C37–N7–Co3	132.39(18)
C29–N3–C31	130.7(2)	C37–N7–C36	102.8(2)
C29–N3–N2	109.4(2)	C36–N7–Co3	124.6(2)
N2-N3-C31	119.88(19)	O4–C8–C9	120.1(3)
C22–O7–Co2	139.58(17)	O4–C8–O3	124.1(3)
C25-C26-Si1	121.57(19)	O3–C8–C9	115.8(3)
C25-C26-C27	117.4(2)	C10-C9-C14	119.3(2)
C27-C26-Si1	121.03(19)	C10-C9-C8	121.0(2)
C28-C23-C22	118.9(2)	C14-C9-C8	119.7(3)
C24-C23-C22	121.4(2)	N2-C30-N1	114.8(2)
C24-C23-C28	119.5(2)	C28-C27-C26	121.4(2)
C32-C33-N5	119.2(2)	O6-C15-C16	118.3(3)
C34–C33–C32	120.0(2)	O6-C15-O5	125.4(3)
C34-C33-N5	120.9(2)	O5-C15-C16	116.3(3)
C18-C19-Si1	122.94(19)	C20-C21-C16	120.5(3)
C18-C19-C20	117.2(2)	N6-C36-N7	115.0(3)
C20-C19-Si1	119.80(18)	$C15-O5-Co3#4^{-1}$	128.52(18)
C22-O8-Co1	124.55(17)	$C8-O3-Co1\#7^{-1}$	117.42(19)
C10-C11-C12	121.4(2)	C1–O2–Co1#8 ¹	108.85(19)
O7-C22-C23	120.3(2)		

	Table 52 – continued from previous page					
angle	(°)	angle	$(^{\circ})$			
$^{-1}$ #1: - 1/2	2 + X, -1/2 + Y, + Z;	#2: -1/2	2 + X, 1 - Y, -1/2 + Z;			
#3: $3/2 - X$, $1/2 - Y$, $1 - Z$; #4: $3/2 - X$, $+ Y$, $1/2 - Z$;						
#5: + X, 1	/2 - Y, 1/2 + Z; #6: 1	/2 - X, 1	/2 - Y, - Z;			
#7: 1/2 + 1	X, $1 - Y$, $1/2 + Z$; #8:	$1/2 + X_{,}$	1/2 + Y, + Z.			

Table S2 – continued from previous page

To get a deeper insight into the frameworks of the three coordination polymers, we have performed the topological analysis using ToposPro software [2] and the concept of the simplified underlying net [3, 4]. The core idea of underlying topology is breaking down a complex structure into its fundamental units without losing its chemical significance [3]. The deconstructive procedure we follow is the method developed by O'Keeffe and Yaghi [3, 4]. Point symbols for nets are used in this work.

bond	length (Å)	bond	length (Å)
Co2 $-O2#1^{-1}$	2.0571(19)	C25–C24	1.382(4)
Co2 $-$ O1#1 ¹	2.3396(19)	C24-C23	1.376(4)
Co2–O3#2 1	1.9816(18)	C23–C28	1.369(4)
Co2–O14	2.061(2)	C23–C22	1.494(4)
Co2–O13	2.061(2)	C28–C27	1.381(4)
Co2-O12	2.282(2)	C29–C30	1.489(3)
Co1–O8	2.160(2)	C30–C31	1.377(3)
Co1–O7	2.143(2)	C30-C35	1.381(4)
Co1–O9	2.017(2)	C31-C32	1.383(4)
Co1-O10	2.2322(17)	C32–C33	1.386(4)
Co1-O11	2.155(2)	C33–C34	1.392(4)
Co1–O15#3 1	2.029(2)	C34-C35	1.383(4)
Si1–C5	1.878(2)	C36 C37	1.493(4)
Si1-C19	1.869(3)	C37 C42	1.381(4)
Si1-C12	1.864(2)	C37 C38	1.379(4)
Si1-C26	1.865(3)	C42–C41	1.379(4)
Si2-C33	1.875(3)	C41–C40	1.384(4)
Si2-C40	1.864(3)	C40–C39	1.385(4)
Si2-C47	1.872(3)	C39–C38	1.381(4)
Si2-C54	1.912(2)	C43–C44	1.494(4)
O2–Co2#4 1	2.0572(19)	C44-C45	1.371(4)
O2–C1	1.267(3)	C44–C49	1.372(5)
O1–Co2#4 1	2.3395(19)	C45–C46	1.386(4)
O1–C1	1.238(3)	C46–C47	1.392(4)
O6-C15	1.329(3)	C47–C48	1.386(4)
O5-C15	1.203(3)	C48–C49	1.382(4)
O4–C8	1.231(3)	C50B-C51B	1.493(11)
O3–Co2#5 1	1.9818(18)	C50A-C51A	1.534(7)
O3–C8	1.258(3)	C51B-C52B	1.422(11)
O8-C22	1.258(4)	C51B-C56B	1.449(11)
O7–C22	1.245(3)	C52B-C53B	1.376(9)
O10–C29	1.261(3)	C53B-C54	1.500(8)
O11–C29	1.258(3)	C54-C55A	1.3900
O13–C36	1.255(3)	C54–C53A	1.3900
O12–C36	1.262(3)	C54-C55B	1.256(6)
O15–Co1#6 ⁻¹	2.029(2)	C55A–C56A	1.3900

Table S3: Selected bond lengths (Å) for compound ${\bf 2}$

3. The crystal structure of compound 2

bond	length (Å)	bond	length (Å)
O15-C43	1.238(4)	C56A-C51A	1.3900
O16–C43	1.241(5)	C51A-C52A	1.3900
O18B-C50B	1.192(10)	C52A-C53A	1.3900
O17A–C50A	1.240(10)	C55B-C56B	1.330(7)
O17B-C50B	1.355(15)	Co3–O19	2.066(2)
O18A–C50A	1.250(14)	Co3–O20	2.070(3)
C1-C2	1.487(3)	Co3–O21	2.0397(19)
C2-C7	1.360(4)	Co3–O22	2.100(2)
C2–C3	1.353(4)	Co3–N6	2.202(2)
C7-C6	1.386(4)	Co3–N1#3 ¹	2.203(2)
C6-C5	1.361(4)	N6-C64	1.308(3)
C5-C4	1.368(4)	N6-C65	1.345(4)
C4–C3	1.384(4)	N7–N5	1.354(3)
C15–C16	1.482(4)	N7-C65	1.312(4)
C16–C17	1.382(4)	N5-C64	1.342(3)
C16–C21	1.366(4)	N5-C62	1.420(3)
C17–C18	1.379(4)	N4-C60	1.333(3)
C18–C19	1.393(4)	N4-C61	1.333(3)
C19–C20	1.385(4)	N2-N3	1.358(3)
C20–C21	1.381(4)	N2-C59	1.422(3)
C8–C9	1.494(3)	N2-C58	1.339(3)
C9–C10	1.371(3)	N3–C57	1.313(3)
C9–C14	1.373(4)	N1-Co3#6 ⁻¹	2.203(2)
C10-C11	1.388(3)	N1–C57	1.352(4)
C11-C12	1.383(3)	N1-C58	1.311(3)
C12–C13	1.387(3)	C62–C63	1.384(3)
C13–C14	1.379(4)	C62–C61	1.381(4)
C26-C25	1.378(4)	C63-C59	1.384(3)
C26-C27	1.384(4)	C59–C60	1.377(4)
$^{-1}$ #1: -1 + X	$I_{,-1 + Y, + Z}$; #2: -1/2 + 2	X, -1/2 - Y, -1/2 + Z;
#3: $1/2 + X$,	-1/2 - Y, -1/2	'2 + Z; #4: 1 -	+ X, 1 + Y, + Z;
#5: 1/2 + X,	-1/2 - Y, 1/2	+ Z; #6: -1/2	2 + X, -1/2 - Y, 1/2 + Z.

Table S3 – continued from previous page

Table S4: Selected angles (°) for compound ${\bf 2}$

angle	(°)	angle	(°)
O2#1-Co2-O1#1 ¹	58.60(7)	O11-C29-C30	120.7(2)
		Con	tinued on next page

Table S4 – continued from previous page

angle	(°)	angle	(°)
O2#1-Co2-O14 ¹	99.28(9)	C31-C30-C29	120.0(2)
O2#1-Co2-O13 ¹	147.03(9)	C31-C30-C35	119.2(2)
O2#1-Co2-O12 ¹	95.78(8)	C35-C30-C29	120.8(2)
O3#2-Co2-O2#1 ¹	104.71(8)	C30-C31-C32	120.5(2)
O3#2-Co2-O1#1 ¹	161.44(8)	C31-C32-C33	121.4(2)
O3#2-Co2-O14 ¹	92.09(8)	C32-C33-Si2	122.15(19)
O3#2-Co2-O13 ¹	100.57(9)	C32-C33-C34	117.2(2)
O3#2-Co2-O12 ¹	97.20(8)	C34-C33-Si2	120.6(2)
O14–Co2–O1#1 ¹	83.52(8)	C35-C34-C33	121.7(3)
O14-Co2-O13	100.60(9)	C30-C35-C34	120.0(2)
O14-Co2-O12	159.69(8)	O13-C36-O12	120.0(3)
O13–Co2–O1#1 ¹	97.97(8)	O13-C36-C37	119.4(2)
O13-Co2-O12	59.99(8)	O12-C36-C37	120.6(3)
O12–Co2–O1#1 1	92.87(8)	C42-C37-C36	119.7(3)
O8-Co1-O10	86.35(8)	C38-C37-C36	121.9(2)
O7-Co1-O8	60.48(8)	C38-C37-C42	118.4(3)
O7-Co1-O10	107.61(9)	C41-C42-C37	120.5(3)
O7-Co1-O11	156.57(9)	C42 - C41 - C40	121.8(3)
O9–Co1–O8	155.85(13)	C41-C40-Si2	118.4(2)
O9–Co1–O7	101.63(12)	C41-C40-C39	117.2(2)
O9–Co1–O10	84.10(9)	C39-C40-Si2	123.9(2)
O9–Co1–O11	96.43(11)	C38-C39-C40	121.3(3)
O9–Co1–O15#3 1	112.18(12)	C37-C38-C39	120.8(3)
O11-Co1-O8	97.66(8)	O15-C43-O16	121.6(3)
O11-Co1-O10	59.37(7)	O15-C43-C44	118.5(3)
O15#3-Co1-O8 ⁻¹	87.03(10)	O16-C43-C44	119.9(3)
O15#3-Co1-O7 ¹	95.55(10)	C45-C44-C43	121.6(3)
O15#3-Co1-O10 ¹	148.61(9)	C45 - C44 - C49	119.4(3)
O15#3-Co1-O11 ¹	91.26(8)	C49-C44-C43	118.9(3)
C19-Si1-C5	111.49(12)	C44 - C45 - C46	119.9(3)
C12-Si1-C5	105.61(11)	C45 - C46 - C47	122.0(3)
C12-Si1-C19	109.21(11)	C46-C47-Si2	123.4(2)
C12-Si1-C26	110.45(11)	C48-C47-Si2	120.0(2)
C26-Si1-C5	111.27(11)	C48-C47-C46	116.5(2)
C26–Si1–C19	108.77(11)	C49-C48-C47	121.8(3)
C33-Si2-C54	108.60(12)	C44-C49-C48	120.4(3)
C40-Si2-C33	108.08(11)	O18B-C50B-O17B	121.3(10)
C40-Si2-C47	107.71(12)	O18B-C50B-C51B	$\frac{125.5(11)}{125.5(11)}$

Table S4 – continued from previous page

angle	(°)	angle	(°)
C40-Si2-C54	114.26(13)	O17B-C50B-C51B	112.9(8)
C47–Si2–C33	110.51(12)	O17A-C50A-O18A	123.7(9)
C47-Si2-C54	107.67(12)	O17A-C50A-C51A	123.8(8)
C1–O2–Co2#4 ¹	97.02(16)	O18A-C50A-C51A	112.5(8)
C1–O1–Co2#4 ¹	84.73(15)	C52B-C51B-C50B	117.4(7)
C8–O3–Co2#5 1	127.43(18)	C52B-C51B-C56B	119.4(6)
C22-O8-Co1	89.09(17)	C56B-C51B-C50B	122.2(8)
C22-O7-Co1	90.26(18)	C53B-C52B-C51B	118.2(6)
C29-O10-Co1	88.85(14)	C52B-C53B-C54	117.0(6)
C29–O11–Co1	92.47(16)	C53B-C54-Si2	110.4(3)
C36-O13-Co2	95.11(17)	C55A-C54-Si2	113.39(19)
C36-O12-Co2	84.85(17)	C55A-C54-C53A	120.0
C43–O15–Co1#6 ¹	112.4(2)	C53A-C54-Si2	126.12(19)
O2-C1-C2	118.4(2)	C55B-C54-Si2	125.3(4)
O1–C1 O2	119.6(2)	C55B-C54-C53B	122.0(4)
O1-C1-C2	121.9(2)	C54-C55A-C56A	120.0
C7-C2-C1	121.2(2)	C51A-C56A-C55A	120.0
C3-C2-C1	120.9(2)	C56A-C51A-C50A	117.7(5)
C3-C2-C7	117.9(3)	C56A-C51A-C52A	120.0
C2-C7-C6	121.1(3)	C52A-C51A-C50A	122.1(5)
C5-C6-C7	121.9(3)	C53A-C52A-C51A	120.0
C6–C5–Si1	123.4(2)	C52A-C53A-C54	120.0
C6-C5-C4	116.0(2)	C54-C55B-C56B	123.2(7)
C4–C5–Si1	120.7(2)	C55B-C56B-C51B	118.0(7)
C5-C4-C3	122.6(3)	O19–Co3–O20	87.82(12)
C2-C3-C4	120.5(3)	O19-Co3-O22	90.20(10)
O6-C15-C16	113.5(2)	O19-Co3-N6	90.10(8)
O5-C15-O6	122.5(3)	O19–Co3–N1#3 1	94.49(9)
O5-C15-C16	124.0(3)	O20-Co3-O22	176.42(10)
C17-C16-C15	119.0(2)	O20-Co3-N6	93.49(10)
C21-C16-C15	121.9(2)	O20–Co3–N1#3 1	89.29(10)
C21-C16-C17	119.0(3)	O21-Co3-O19	173.97(8)
C18-C17-C16	120.5(2)	O21-Co3-O20	92.22(11)
C17-C18-C19	121.7(2)	O21-Co3-O22	90.06(8)
C18-C19-Si1	122.75(19)	O21-Co3-N6	83.88(8)
C20-C19-Si1	120.9(2)	O21–Co3–N1#3 1	91.54(8)
C20-C19-C18	116.1(2)	O22-Co3-N6	89.50(8)
C21-C20-C19	122.6(3)	022-Co3-N1#3 ¹	87.88(8)

		C	•	
Table S4 $-$	continued	trom	previous	nage
TUDIO DI	comunaca	II OIII	provious	pase

angle	(°)	angle	(°)	
C16-C21-C20	120.1(3)	N6-Co3-N1#3 ¹	174.72(9)	
O4–C8–O3	126.1(2)	C64-N6-Co3	128.58(18)	
O4-C8-C9	117.3(2)	C64–N6–C65	102.7(2)	
O3–C8–C9	116.6(2)	C65–N6–Co3	128.31(18)	
C10-C9-C8	122.0(2)	C65–N7–N5	101.7(2)	
C10-C9-C14	119.1(2)	N7-N5-C62	120.6(2)	
C14-C9-C8	118.9(2)	C64–N5–N7	109.7(2)	
C9-C10-C11	120.4(2)	C64–N5–C62	129.7(2)	
C12-C11-C10	121.2(2)	C60-N4-C61	119.0(2)	
C11-C12-Si1	123.73(18)	N3-N2-C59	121.0(2)	
C11-C12-C13	117.4(2)	C58–N2–N3	109.3(2)	
C13-C12-Si1	118.80(18)	C58-N2-C59	129.7(2)	
C14-C13-C12	121.3(2)	C57–N3–N2	102.4(2)	
C9-C14-C13	120.6(2)	C57–N1–Co3#6 ¹	127.69(18)	
C25-C26-Si1	121.9(2)	C58–N1–Co3#6 ¹	129.4(2)	
C25-C26-C27	116.9(3)	C58–N1–C57	102.8(2)	
C27-C26-Si1	121.1(2)	N6-C64-N5	110.2(2)	
C26-C25-C24	121.7(3)	N7-C65-N6	115.7(3)	
C23-C24-C25	120.6(3)	C63-C62-N5	119.9(2)	
C24-C23-C22	121.3(3)	C61-C62-N5	119.9(2)	
C28-C23-C24	118.4(3)	C61-C62-C63	120.2(2)	
C28-C23-C22	120.3(2)	C59–C63–C62	117.0(2)	
C23-C28-C27	120.8(3)	C63–C59–N2	120.6(2)	
C28-C27-C26	121.6(3)	C60-C59-N2	119.3(2)	
O8-C22-C23	119.0(3)	C60-C59-C63	120.2(2)	
O7-C22-O8	120.0(3)	N4-C60-C59	121.9(2)	
O7-C22-C23	121.0(3)	N4-C61-C62	121.7(2)	
O10-C29-C30	120.0(2)	N3-C57-N1	115.0(3)	
O11-C29-O10	119.3(2)	N1-C58-N2	110.5(3)	
1 #1: -1 + X, -1 + Y, + Z; #2: -1/2 + X, -1/2 - Y, -1/2 + Z;				
#3: $1/2 + X$, $-1/2 - Y$, $-1/2 + Z$; #4: $1 + X$, $1 + Y$, $+ Z$;				

#5: 1/2 + X, -1/2 - Y, 1/2 + Z; #6: -1/2 + X, -1/2 - Y, 1/2 + Z.

Donor···acceptor	Hydrogen bond length (Å)
$O6-H \cdot \cdot \cdot N4$	2.735
$O19-H\cdots O11$	2.768
$O22-H\cdots O8$	2.928
$O21-H\cdots O2$	2.712
$O21-H\cdots O4$	2.567
$O22-H\cdots O12$	2.738

Table S5: Hydrogen bonding interactions between the 3D motif and the 1D motif in the structures of compound ${\bf 2}$

4. The crystal structure of compound 3

Figure S2: (a) Coordination environments (at 50 % probability level) of Cd(II)1, Cd(II)2 and Cd(II)3 centers in compound **3**. The hydrogen atoms and crystal water molecules are omitted for clarity. Symmetry codes for the generated atoms: #1: -1 + X, 1 + Y, + Z; #2: -1/2 + X, -1/2 - Y, -1/2 + Z; #3: 1/2 + X, -1/2 - Y, -1/2 + Z; #4: -1/2 + X, -1/2 - Y, 1/2 + Z; #5: 1 + X, -1 + Y, + Z; #6: 1/2 + X, -1/2 - Y, 1/2 + Z. (b) The coordination environment of L1 ligands of the 3D motif in compound **3**. (c) The 1D cationic motif in compound **3**.

Figure S3: Coordination environments of (a) Co1 in compound ${\bf 2}$ and (b) Cd1 in compound ${\bf 3}$.

Figure S4: (a) (c) and (e) Perspective view of the 3D network in compound **3**. (b) (d) and (f) Schematic view of the 3D 3-connected framework with the $(10^3)_4$ topology in compound **3**. Color code: yellow ball, 3-connected Htcps³⁻ (Htcps-1) node; light yellow ball, 3-connected Htcps³⁻ (Htcps-2) node; blue ball, 3-connected Cd1 node; light green ball, 3-connected Cd2 node; blackish green ball, 2-connected Cd3 node.

bond	length (Å)	bond	ength (Å)
Cd2-O13	2.423(3)	C37–C42	1.371(6)
Cd2-O12	2.282(3)	C37–C38	1.397(6)
Cd2–O2#1 1	2.456(3)	C40–C41	1.396(6)
Cd2–O1#1 1	2.280(3)	C40–C39	1.368(6)
Cd2–O3#2 1	2.192(3)	C41–C42	1.367(6)
Cd2-O14	2.283(3)	C38–C39	1.378(6)
Cd1-O10	2.375(3)	C44–C49	1.357(6)
Cd1-011	2.397(3)	C44–C45	1.365(6)
Cd1–O16#3 1	2.447(3)	C44–C43	1.506(5)
Cd1–O15#3 1	2.315(3)	C49–C48	1.387(6)
Cd1-08	2.418(3)	C45–C46	1.391(6)
Cd1-07	2.281(3)	C13–C14	1.380(6)
Cd1-O9	2.250(3)	C9–C10	1.354(6)
Si1–C5	1.884(4)	C9–C14	1.368(6)
Si1-C19	1.871(4)	C9–C8	1.496(6)
Si1-C12	1.873(4)	C11-C10	1.377(6)
Si1-C26	1.863(4)	N1-Cd3#4 ¹	2.362(3)
Si2–C33	1.880(4)	N1-C57	1.345(6)
Si2-C47	1.881(4)	N1-C58	1.308(6)
Si2-C40	1.868(4)	O16–Cd1#4 1	2.447(3)
Si2-C54	1.895(3)	O16–C43	1.253(6)
C33–C34	1.378(6)	C43–Cd1#4 1	2.732(4)
C33–C32	1.390(6)	C43–O15	1.251(6)
O10-C29	1.260(5)	O15–Cd1#4 1	2.315(3)
O11–C29	1.249(5)	C23 C28	1.375(6)
C29-C30	1.488(6)	C23–C24	1.370(6)
C30 - C31	1.385(6)	C23–C22	1.492(6)
C30 - C35	1.371(5)	C2-C3	1.332(7)
C34-C35	1.382(6)	C2–C7	1.357(6)
C32 - C31	1.374(6)	C2-C1	1.489(6)
Cd3–N6	2.373(3)	C24-C25	1.363(7)
Cd3–N1#3 1	2.362(3)	C3–C4	1.399(7)
Cd3-O21	2.274(3)	C7–C6	1.390(7)
Cd3-O20	2.269(3)	O2–Cd2#5 1	2.456(3)
Cd3-O19	2.265(4)	O2-C1	1.244(5)
Cd3-O22	2.253(5)	C1–Cd2#5 1	2.727(4)
C47–C46	1.379(6)	C1–O1	1.266(5)

Table S6: Selected bond lengths (Å) for compound ${\bf 3}$

bond	length (Å)	bond	length (Å)
C47–C48	1.382(6)	C16-C17	1.375(6)
C5-C6	1.352(7)	C16–C21	1.374(7)
C5-C4	1.342(6)	C16–C15	1.476(6)
C19–C18	1.365(6)	C20–C21	1.380(7)
C19–C20	1.373(6)	O1–Cd2#5 1	2.280(3)
C12–C13	1.391(6)	O6–C15	1.349(5)
C12–C11	1.378(6)	O8–C22	1.241(5)
C26-C27	1.388(6)	O7–C22	1.243(5)
C26-C25	1.377(6)	O5–C15	1.202(5)
N5-C64	1.334(5)	O4–C8	1.226(7)
N5–N7	1.356(5)	C8–O3	1.268(7)
N5-C62	1.433(5)	O3–Cd2#6 1	2.192(3)
C64–N6	1.303(5)	C51B-C52B	1.3900
N7-C65	1.303(5)	C51B-C56B	1.3900
N6-C65	1.337(6)	C51B-C50B	1.579(11)
C27 - C28	1.376(6)	C52B-C53B	1.3900
C18–C17	1.392(6)	C53B-C54	1.3900
C63–C62	1.386(5)	C54-C55B	1.3900
C63 - C59	1.393(5)	C54–C53A	1.376(5)
C61 - C62	1.383(6)	C54–C55A	1.402(5)
C61–N4	1.339(5)	C55B-C56B	1.3900
N3–N2	1.351(5)	C50B-O17B	1.176(11)
N3–C57	1.311(5)	C50B-O18B	1.304(17)
N2-C59	1.421(5)	C52A–C53A	1.388(5)
N2-C58	1.336(5)	C52A–C51A	1.388(5)
C59–C60	1.375(6)	C55A–C56A	1.393(5)
N4-C60	1.329(5)	C56A–C51A	1.387(5)
O13–C36	1.267(5)	C51A-C50A	1.455(15)
O12–C36	1.262(5)	C50A–O17A	1.26(2)
C36 - C37	1.482(5)	C50A-O18A	1.217(14)
1 #1: -1 + X,	$1 + Y, + Z; \neq$	$\neq 2: -1/2 + X, -$	-1/2 - Y, -1/2 + Z;

Table S6 – continued from previous page

¹ #1: -1 + X, 1 + Y, +Z; #2: -1/2 + X, -1/2 - Y, -1/2 + Z; #3: 1/2 + X, -1/2 - Y, -1/2 + Z; #4: -1/2 + X, -1/2 - Y, 1/2 + Z; #5: 1 + X, -1 + Y, +Z; #6: 1/2 + X, -1/2 - Y, 1/2 + Z.

angle	(°)	angle	(°)
O13–Cd2–O2#1 1	87.45(11)	C60-C59-C63	120.0(3)
O12-Cd2-O13	55.74(10)	C60-C59-N2	120.3(3)
O12–Cd2–O2#1 1	100.87(12)	C60-N4-C61	119.1(4)
O12-Cd2-O14	94.76(14)	N4-C60-C59	122.4(4)
$O1#1-Cd2-O13^{-1}$	99.86(11)	C36–O13–Cd2	88.2(2)
$O1#1-Cd2-O12^{-1}$	148.59(12)	C36-O12-Cd2	94.8(3)
$O1#1-Cd2-O2#1^{-1}$	54.61(11)	O13-C36-C37	120.6(4)
$O1#1-Cd2-O14^{-1}$	99.48(13)	O12-C36-O13	121.2(4)
$O3#2-Cd2-O13^{-1}$	113.04(14)	O12-C36-C37	118.2(4)
$O3\#2-Cd2-O12^{-1}$	101.58(13)	C42-C37-C36	120.6(4)
$O3#2-Cd2-O2#1^{-1}$	155.68(13)	C42-C37-C38	117.9(4)
$O3\#2-Cd2-O11^{-1}$	106.77(14)	C38-C37-C36	121.5(4)
$O3\#2-Cd2-O14^{-1}$	87.88(16)	C41-C40-Si2	117.9(3)
O14–Cd2–O13	145.68(14)	C39-C40-Si2	124.6(3)
O14–Cd2–O2#1 1	81.04(11)	C39-C40-C41	117.2(4)
O10-Cd1-O11	54.41(10)	C42-C41-C40	121.1(4)
O10–Cd1–O16#3 1	114.78(13)	C41-C42-C37	121.6(4)
O10-Cd1-O8	95.04(11)	C39-C38-C37	120.0(4)
O11–Cd1–O16#3 1	156.44(12)	C49-C44-C45	119.2(4)
O11-Cd1-O8	80.71(12)	C49-C44-C43	121.2(4)
O15#3–Cd1–O10 1	84.56(11)	C45-C44-C43	119.5(4)
O15#3–Cd1–O11 1	133.98(11)	C44-C49-C48	120.6(4)
$O15#3-Cd1-O16#3^{-1}$	54.40(11)	C44-C45-C46	120.1(4)
$O15#3-Cd1-O8^{-1}$	83.56(14)	C47-C46-C45	121.9(4)
O8–Cd1–O16#3 1	122.61(12)	C14-C13-C12	121.0(4)
O7-Cd1-O10	149.43(11)	C10-C9-C14	119.1(4)
O7-Cd1-O11	109.94(12)	C10-C9-C8	121.7(5)
O7–Cd1–O16#3 1	88.71(14)	C14-C9-C8	119.1(5)
O7–Cd1–O15#3 1	94.98(13)	C10-C11-C12	120.3(4)
O7-Cd1-O8	54.70(11)	C57–N1–Cd3#4 1	129.0(3)
O9-Cd1-O10	97.32(15)	C58–N1–Cd3#4 1	127.8(3)
O9-Cd1-O11	80.95(12)	C58-N1-C57	102.6(4)
O9–Cd1–O16#3 1	80.02(13)	N3-C57-N1	115.0(4)
O9–Cd1–O15#3 1	129.18(17)	N1-C58-N2	110.8(4)
O9-Cd1-O8	145.86(19)	C9-C10-C11	121.7(4)
O9-Cd1-O7	106.25(17)	C43–O16–Cd1#4 1	89.1(3)
C19-Si1-C5	111.22(19)	C44–C43–Cd1#4 1	173.2(3)

Table S7: Selected angles (°) for compound ${\bf 3}$

Table S7 –	continued	from	previous	page

angle	(°)	angle	$(^{\circ})$
C19-Si1-C12	110.95(18)	O16-C43-Cd1#4 ¹	63.6(2)
C12-Si1-C5	106.67(17)	O16-C43-C44	120.2(4)
C26-Si1-C5	111.05(18)	O15–C43–Cd1#4 1	57.5(2)
C26-Si1-C19	108.05(18)	O15-C43-C44	118.7(4)
C26-Si1-C12	108.89(18)	O15-C43-O16	121.0(4)
C33-Si2-C47	109.73(18)	C47-C48-C49	121.7(4)
C33-Si2-C54	107.23(17)	C43–O15–Cd1#4 1	95.4(3)
C47-Si2-C54	110.33(16)	C40-C39-C38	122.2(4)
C40-Si2-C33	108.17(17)	C28-C23-C22	121.7(4)
C40-Si2-C47	108.15(17)	C24-C23-C28	117.4(4)
C40-Si2-C54	113.19(18)	C24-C23-C22	120.9(4)
C34–C33–Si2	122.9(3)	C3-C2-C7	118.5(4)
C34 - C33 - C32	116.8(4)	C3-C2-C1	121.7(4)
C32–C33–Si2	120.3(3)	C7-C2-C1	119.7(4)
C29–O10–Cd1	92.8(3)	C23-C28-C27	121.1(4)
C29–O11–Cd1	92.0(2)	C25-C24-C23	121.6(5)
O10-C29-C30	119.9(4)	C2-C3-C4	121.4(4)
O11-C29-O10	120.8(4)	C2-C7-C6	118.9(5)
O11-C29-C30	119.3(3)	C24-C25-C26	121.9(4)
C31 - C30 - C29	121.2(4)	C5-C6-C7	123.8(5)
C35 - C30 - C29	120.1(4)	C5-C4-C3	121.7(5)
C35 - C30 - C31	118.6(4)	C1–O2–Cd2#5 1	88.7(2)
C33 - C34 - C35	121.9(4)	C2–C1–Cd2#5 1	173.8(3)
C31 - C32 - C33	121.8(4)	O2-C1-Cd2#5 1	64.2(2)
C32 - C31 - C30	120.4(4)	O2-C1-C2	121.2(4)
C30 - C35 - C34	120.5(4)	O2C1O1	120.4(4)
N1#3–Cd3–N6 $^{\rm 1}$	172.16(13)	O1–C1–Cd2#5 1	56.2(2)
O21–Cd3–N6	79.73(12)	O1C1C2	118.4(4)
O21–Cd3–N1#3 1	94.79(13)	C17-C16-C15	119.3(4)
O20-Cd3-N6	88.71(12)	C21-C16-C17	118.2(4)
O20–Cd3–N1#3 1	85.97(13)	C21-C16-C15	122.4(4)
O20–Cd3–O21	93.04(12)	C16-C17-C18	120.5(4)
O19–Cd3–N6	88.38(13)	C19-C20-C21	123.2(5)
O19–Cd3–N1#3 1	97.47(14)	C16-C21-C20	119.8(5)
O19–Cd3–O21	167.30(13)	C1–O1–Cd2#5 1	96.3(3)
O19-Cd3-O20	91.11(14)	C22-O8-Cd1	88.7(3)
O22-Cd3-N6	97.55(17)	C22–O7–Cd1	95.1(3)
O22-Cd3-N1#3 ¹	88.10(18)	O6-C15-C16	113.8(4)

Table S7 –	continue	d from	previous	page
	\sim	-		

angle	(°)	angle	(°)
O22-Cd3-O21	91.07(18)	O5-C15-C16	123.8(4)
O22–Cd3–O20	173.04(18)	O5-C15-O6	122.4(4)
O22–Cd3–O19	86.1(2)	O8-C22-C23	119.0(4)
C46-C47-Si2	122.0(3)	O8-C22-O7	121.0(4)
C46 - C47 - C48	116.5(4)	O7-C22-C23	120.0(4)
C48-C47-Si2	121.5(3)	C9-C14-C13	120.2(4)
C6–C5–Si1	121.5(3)	O4-C8-C9	120.6(5)
C4–C5–Si1	122.8(3)	O4-C8-O3	123.4(5)
C4-C5-C6	115.7(4)	O3–C8–C9	116.0(5)
C18–C19–Si1	124.2(3)	C8–O3–Cd2#6 1	108.6(4)
C18-C19-C20	116.1(4)	C52B-C51B-C56B	120.0
C20-C19-Si1	119.4(3)	C52B-C51B-C50B	122.5(5)
C13-C12-Si1	119.9(3)	C56B-C51B-C50B	117.2(5)
C11-C12-Si1	122.2(3)	C51B-C52B-C53B	120.0
C11-C12-C13	117.7(4)	C52B-C53B-C54	120.0
C27-C26-Si1	122.1(3)	C53B-C54-Si2	116.6(2)
C25-C26-Si1	121.3(3)	C53B-C54-C55B	120.0
C25 - C26 - C27	116.4(4)	C55B-C54-Si2	122.0(2)
C64-N5-N7	109.7(3)	C53A-C54-Si2	125.7(5)
C64-N5-C62	130.4(4)	C53A-C54-C55A	115.4(6)
N7–N5–C62	119.8(3)	C55A-C54-Si2	116.2(4)
N6-C64-N5	109.6(4)	C54–C55B–C56B	120.0
C65-N7-N5	102.0(4)	C55B-C56B-C51B	120.0
C64-N6-Cd3	129.6(3)	O17B-C50B-C51B	118.1(10)
C64-N6-C65	103.7(4)	O17B-C50B-O18B	126.3(12)
C65-N6-Cd3	126.4(3)	O18B-C50B-C51B	115.6(10)
C28-C27-C26	121.4(4)	C53A-C52A-C51A	124.4(10)
C19-C18-C17	122.1(4)	C54–C53A–C52A	119.0(8)
C62 - C63 - C59	116.7(4)	C56A-C55A-C54	126.3(8)
N4-C61-C62	121.3(4)	C51A-C56A-C55A	116.4(9)
C63-C62-N5	119.1(4)	C52A-C51A-C50A	121.8(9)
C61-C62-N5	120.4(3)	C56A-C51A-C52A	117.9(10)
C61-C62-C63	120.6(3)	C56A-C51A-C50A	119.7(9)
C57-N3-N2	102.6(4)	O17A-C50A-C51A	115.0(12)
N3-N2-C59	121.1(3)	O18A-C50A-C51A	121.7(11)
C58–N2–N3	109.0(3)	O18A-C50A-O17A	122.8(12)
C58-N2-C59	129.8(4)	N7-C65-N6	115.0(4)
C63-C59-N2	119.7(4)		

Table S7 – continued from previous page

Table 51 continued from previous page				
angle	(°)	angle	$(^{\circ})$	
$^{-1}$ #1: -1 + X, 1 +	-Y, +Z; #2: -1	1/2 + X, -1/2 -	-Y, -1/2 + Z;	
#3: $1/2 + X$, $-1/2 - Y$, $-1/2 + Z$; #4: $-1/2 + X$, $-1/2 - Y$, $1/2 + Z$;				
#5: 1 + X, -1 + 1	$Y_{2} + Z_{2} \# 6: 1/2 +$	$+ X, -1/2 - Y_{2}$	1/2 + Z.	

Table S8: Hydrogen bonding interactions between the 3D motif and the 1D motif in the structures of compound ${\bf 3}$

Donor···acceptor	Hydrogen bond length (Å)
$O6-H \cdot \cdot \cdot N4$	2.740
$O19-H \cdots O10$	2.782
$O21-H\cdots O1$	2.679
$O21-H\cdots O4$	2.672
$O20-H\cdots O15$	2.853

Figure S5: Experimental powder X-ray diffraction patterns versus simulated powder patterns for compounds (a) 1, (b) 2 and (c) 3.

5. PXRD, IR and TG

Figure S6: FT-IR spectra of compounds (a) $\mathbf{1},$ (b) $\mathbf{2}$ and (c) $\mathbf{3}.$

Figure S7: TG-DTG curves of compounds (a) 1, (b) 2 and (c) 3.

6. The photoluminescence properties of compound 3

Figure S8: Luminescence responses of compound **3** toward different concentrations of acetone in deionized water ($\lambda_{ex} = 290 \text{ nm}$).

Table S9: ICP-AES analysis results for $3\text{-Fe}(NO_3)_3$ and $3\text{-Cu}(NO_3)_2$

Samples	Amount of Fe or Cu	Amount of Cd
$3-\mathrm{Fe}(\mathrm{NO}_3)_3$	33.5 ppm (Fe)	877 ppm
$3-\mathrm{Cu(NO_3)_2}$	18.1 ppm (Cu)	977 ppm

Figure S9: Linear region of fluorescence intensity of **3** in water upon addition of (a) Fe³⁺ (0 – 0.05 mM) and (b) Cu²⁺ (0 – 0.1 mM) in water at $\lambda_{ex} = 290$ nm.

Figure S10: UV-Vis adsorption spectra of deionized water suspensions containing Fe^{3+} , Cu^{2+} metal ions (10⁻³ M) and the emission spectrum of compound **3** (8 mg) dispersed in deionized water (100 mL).

Figure S11: Luminescence responses of compound **3** towards different concentrations of (a) $\text{Cr}_2\text{O}_7^{2-}$ and (b) MnO_4^- in deionized water ($\lambda_{\text{ex}} = 290 \text{ nm}$).

References

- W. D. Clark, G. E. Tyson, T. K. Hollis, H. U. Valle, E. J. Valente, A. G. Oliver, M. P. Dukes, Toward molecular rotors: tetra-N-heterocyclic carbene Ag(I)-halide cubane-type clusters, Dalton Trans. 42 (2013) 7338– 7344. doi:10.1039/C3DT32862G. URL http://dx.doi.org/10.1039/C3DT32862G
- [2] V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des. 14 (7) (2014) 3576-3586. arXiv:http://dx.doi.org/10. 1021/cg500498k, doi:10.1021/cg500498k. URL http://dx.doi.org/10.1021/cg500498k
- M. O'Keeffe, O. M. Yaghi, Deconstructing the crystal structures of metalorganic frameworks and related materials into their underlying nets, Chem. Rev. 112 (2) (2012) 675-702. arXiv:http://dx.doi.org/10. 1021/cr200205j, doi:10.1021/cr200205j. URL http://dx.doi.org/10.1021/cr200205j
- M. Li, D. Li, M. O'Keeffe, O. M. Yaghi, Topological analysis of metalorganic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle, Chem. Rev. 114 (2) (2014) 1343– 1370. arXiv:http://dx.doi.org/10.1021/cr400392k, doi:10.1021/ cr400392k.

URL http://dx.doi.org/10.1021/cr400392k