Supplementary information

High- κ dielectric ϵ -Ga₂O₃ stabilized in a transparent heteroepitaxial structure grown by mist CVD at atmospheric pressure

Subaru Yusa,¹ Daichi Oka,¹ and Tomoteru Fukumura^{1,2}

¹ Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

² Advanced Institute for Materials Research and Core Research Cluster, Tohoku University, Sendai 980-8577, Japan

Supplementary Table

Table S1. Thickness of ε -Ga₂O₃ and ITO epitaxial thin films, roughness of top surface and bottom interface, and dielectric parameters of the ε -Ga₂O₃ epitaxial thin films. Thicknesses and roughnesses were determined by x-ray reflection shown in Figure S1 and a stylus profilometer for samples A–C and D, respectively. The errors of κ were calculated from the total roughness of the top surface and bottom interface of the ε -Ga₂O₃ epitaxial thin films for Samples B and C, while the error of thickness was reflected in that of κ for Sample D.

	Thickness of ε-Ga ₂ O ₃ (nm)	Roughness of top surface of ɛ-Ga ₂ O ₃ (nm)	Roughness of bottom interface of ε-Ga ₂ O ₃ (nm)	Thickness of ITO (nm)	κ at 10 kHz	Error of <i>κ</i> at 10 kHz
Sample A (on Al ₂ O ₃)	79	0.9	1.2	-	-	-
Sample B (on ITO/YSZ)	136	2.0	0.2	42	32.1	0.5
Sample C (on ITO/YSZ)	156	2.3	0.9	44	22.9	0.5
Sample D (on ITO/YSZ)	89(±14)	-	-	-	14	2

Supplementary Figures

Figure S1. X-ray reflection patterns for ε -Ga₂O₃ epitaxial thin films. Red curves denote the fitting results to evaluate each layer thickness shown in Table S1.

Figure S2. XRD θ -2 θ patterns for ϵ -Ga₂O₃ thin films on α -Al₂O₃ and ITO/YSZ substrates around ϵ -Ga₂O₃ 006 diffraction. Vertical dashed lines denote peak positions for ϵ -Ga₂O₃ and β -Ga₂O₃ as references.^{S1}

Figure S3. A plane view SEM image for bare YSZ substrate.

Reference

S1 H. Y. Playford, A. C. Hannon, E. R. Barney and R. I. Walton, *Chem. Eur. J.*, 2013, **19**, 2803–2813.