Dual-responsive luminescent sensor based on water-stable $\mathrm{Cd}(\mathrm{II})-\mathrm{MOF}$ for highly selective and sensitive detection of acetylacetone and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ in aqueous solution

Ying-Jie Yang, Yue-Hua Li, Dong Liu, Guang-Hua Cui*
College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian new-city, Tangshan, Hebei, 063210, P. R. China

*Corresponding author: Guang-Hua Cui Fax: +86-315-8805462, Tel: $+86-315-8805460$.

E-mail: tscghua@126.com

Table S1 Crystal data and structure refinements for $\mathbf{1}$ and 2.

Table S2(a) Selected Bond Lengths $[\AA]$ and Angles $\left[{ }^{\circ}\right]$ for the 1; (b) Selected Bond Lengths $[\AA]$ and Angles [${ }^{\circ}$] for the $\mathbf{2}$.

Table S3 The BET surface area and porosity of $\mathbf{1}$ and $\mathbf{2}$.

Fig. S1 The two coordination modes of $1,4-\mathrm{NDC}^{2-}$ ligands to form $\left[\mathrm{Cd}_{2}\left(1,4-\mathrm{NDC}^{2-}\right)_{2}\right]_{\mathrm{n}}$ unit.

Fig. S2 (a) Each $\left[\mathrm{Cd}_{2}\left(1,4-\mathrm{NDC}^{2-}\right)_{2}\right]_{\mathrm{n}}$ unit binds to adjacent units to form a 3D framework; (b) The L1 ligands bridge two $\mathrm{Cd}(\mathrm{II})$ ions.

Fig. S3 Topological representation of the lvt network in $\mathbf{1}$ with $\left[\mathrm{Cd}_{2}\left(1,4-\mathrm{NDC}^{2-}\right)_{2}\right]_{\mathrm{n}}$ units selected as nodes.

Fig. S4 (a) The 1D waved chain $\left[\mathrm{Cd}\left(1,4-\mathrm{NDC}^{2-}\right)\right]_{\mathrm{n}}$ of $\mathbf{2}$; (b) The similar "V" shape 1 D chain $[\mathrm{Cd}(\mathrm{L} 2)]_{\mathrm{n}}$ of $\mathbf{2}$.

Fig. S5 The simulated from single-crystal data, obtained from the experiment powder X-ray diffraction patterns of $\mathbf{1}$ and $\mathbf{2}$.

Fig. S6 The TG curves of $\mathbf{1}$ and $\mathbf{2}$.

Fig. S7 PXRD patterns of $\mathrm{Cd}(\mathrm{II})-\mathrm{MOFs}(\mathbf{a}=\mathrm{MOF}-\mathbf{1} ; \mathbf{b}=$ MOF-2 $)$ in different pH values in the range of 3-13.

Fig. S8 PXRD patterns of $\mathrm{Cd}(\mathrm{II})-\mathrm{MOFs}(\mathbf{a}=\mathrm{MOF}-\mathbf{1} ; \mathbf{b}=$ MOF-2 $)$ soaking in aqueous solution for 30 days.

Fig. S9 Comparison of the quenching efficiency relative of $\mathbf{1}$ in different small organic molecules (the luminescence intensity of $\mathbf{1}$ in aqueous solution is the original value).

Fig. S10 The luminescence intensity of $\mathbf{1}$ after sensing experiments $\left(\mathbf{a}=\mathrm{ACAC} ; \mathbf{b}=\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right)$ five runs of recycling.

Fig. S11 The PXRD patterns $\left(\mathbf{a}=\mathbf{1}\right.$ after sensing ACAC for five cycles in $\mathrm{H}_{2} \mathrm{O} ; \mathbf{b}=\mathbf{1}$ after sensing $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ion for five cycles in $\mathrm{H}_{2} \mathrm{O}$).

Fig. S12 Comparison of the quenching efficiency relative of $\mathbf{1}$ in aqueous solution in the presence of different ions ($\mathbf{a}=$ metal ions; $\mathbf{b}=$ anions, the luminescence intensity of $\mathbf{1}$ in aqueous solution is the original value).

Fig. S13 Emission intensities of $\mathbf{1}$ dispersed in the aqueous solution of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ in the presence of different ions.

Fig. S14 IR spectra ($\mathbf{a}=$ powder of $\mathbf{1} ; \mathbf{b}=$ powder of $\mathbf{1}$ in $\mathrm{H}_{2} \mathrm{O} ; \mathbf{c}=\mathbf{1}$ after sensing ACAC for five cycles in $\mathrm{H}_{2} \mathrm{O} ; \mathbf{d}=\mathbf{1}$ after sensing $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ion for five cycles in $\mathrm{H}_{2} \mathrm{O}$).

Fig. S15 The EDX patterns ($\mathbf{a}=$ powder of $\mathbf{1} ; \mathbf{b}=\mathbf{1}$ after sensing for ACAC for five cycles in $\mathrm{H}_{2} \mathrm{O}$; $\mathbf{c}=\mathbf{1}$ after sensing $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ion for five cycles in $\mathrm{H}_{2} \mathrm{O}$).

Fig. S16 The UV-vis spectra $(\mathbf{a}=$ small organic molecules; $\mathbf{b}=$ metal ions; $\mathbf{c}=$ anions and the excitation spectra of $\mathbf{1}$).

Table S1 Crystal data and structure refinements for $\mathbf{1}$ and 2

MOF	1	2
Chemical formula	$\mathrm{C}_{42} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Cd}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Cd}$
Formula weight	941.48	642.97
Crystal system	Monoclinic	Monoclinic
Space group	$P 2{ }_{1} / n$	$P 2{ }_{1} / c$
$a(\AA)$	20.577(1)	15.503(9)
$b(\AA)$	7.636(5)	10.572(6)
$c(\AA)$	20.577(6)	18.453(1)
$\alpha\left({ }^{\circ}\right)$	90	90
$\beta\left({ }^{\circ}\right)$	94.06(1)	107.03(1)
$\gamma\left({ }^{\circ}\right)$	90	90
$V\left(\AA^{3}\right)$	3225.0(4)	2891.7(3)
Z	4	4
$D_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.939	1.477
Absorption coefficient, mm^{-1}	1.389	0.799
$F(000)$	1872	1304
Crystal size, mm	$0.25 \times 0.22 \times 0.21$	$0.20 \times 0.18 \times 0.17$
θ range, deg	2.281~28.320	2.246~28.326
Index range h, k, l	-27/27, -10/10, -27/27	-20/16, -14/14, -24/24
Reflections collected	57441	40688
Independent reflections ($\mathrm{R}_{\text {int }}$)	7972(0.0291)	7155 (0.0240)
Data/restraint/parameters	7972/6/516	7155 / 0 / 372
Goodness-of-fit on F^{2}	1.027	1.079
Final $\mathrm{R}_{1}, w \mathrm{R}_{2}(I>2 \sigma(I))$	0.0211, 0.0566	0.0267, 0.0996
Largest diff. peak and hole	1.523, -0.805	0.418, -0.987

Table S2(a) Selected Bond Lengths [\AA] and Angles $\left[{ }^{\circ}\right]$ for the $\mathbf{1}$

Parameter	Value	Parameter	Value
1			
$\mathrm{Cd}(1)-\mathrm{O}(1)$	2.270(2)	$\mathrm{Cd}(1)-\mathrm{O}(7) \mathrm{A}$	2.258(2)
$\mathrm{Cd}(1)-\mathrm{O}(8) \mathrm{A}$	2.576(2)	$\mathrm{Cd}(1)-\mathrm{O}(8) \mathrm{B}$	2.323(2)
$\mathrm{Cd}(1)-\mathrm{O}(2) \mathrm{C}$	2.338(2)	$\mathrm{Cd}(1)-\mathrm{N}(1)$	2.241(2)
$\mathrm{Cd}(2)-\mathrm{O}(4)$	2.210(2)	$\mathrm{Cd}(2)-\mathrm{O}(5)$	2.279(2)
$\mathrm{Cd}(2)-\mathrm{O}(3) \mathrm{D}$	2.319(2)	$\mathrm{Cd}(2)-\mathrm{O}(6) \mathrm{D}$	$2.366(2)$
$\mathrm{Cd}(2)-\mathrm{N}(2)$	2.224(2)		
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(7) \mathrm{A}$	166.5(8)	$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(1)$	97.5(7)
$\mathrm{O}(7) \mathrm{A}-\mathrm{Cd}(1)-\mathrm{O}(1)$	85.6(8)	$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(8) \mathrm{B}$	100.7(7)
$\mathrm{O}(7) \mathrm{A}-\mathrm{Cd}(1)-\mathrm{O}(8) \mathrm{B}$	92.5(6)	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(8) \mathrm{B}$	87.8(7)
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(2) \mathrm{C}$	85.4(7)	$\mathrm{O}(7) \mathrm{A}-\mathrm{Cd}(1)-\mathrm{O}(2) \mathrm{C}$	93.5(8)
$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(2) \mathrm{C}$	171.2(8)	$\mathrm{O}(8) \mathrm{B}-\mathrm{Cd}(1)-\mathrm{O}(2) \mathrm{C}$	83.4(7)
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(8) \mathrm{A}$	113.1(7)	$\mathrm{O}(7) \mathrm{A}-\mathrm{Cd}(1)-\mathrm{O}(8) \mathrm{A}$	53.8(6)
$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(8) \mathrm{A}$	87.6(6)	$\mathrm{O}(8) \mathrm{B}-\mathrm{Cd}(1)-\mathrm{O}(8) \mathrm{A}$	146.2(4)
$\mathrm{O}(2) \mathrm{C}-\mathrm{Cd}(1)-\mathrm{O}(8) \mathrm{A}$	99.0(6)	$\mathrm{O}(4)-\mathrm{Cd}(2)-\mathrm{N}(2)$	160.4(8)
$\mathrm{O}(4)-\mathrm{Cd}(2)-\mathrm{O}(5)$	92.9(8)	$\mathrm{N}(2)-\mathrm{Cd}(2)-\mathrm{O}(5)$	102.6(7)
$\mathrm{O}(4)-\mathrm{Cd}(2)-\mathrm{O}(3) \mathrm{D}$	90.1 (6)	$\mathrm{N}(2)-\mathrm{Cd}(2)-\mathrm{O}(3) \mathrm{D}$	101.2(7)
$\mathrm{O}(5)-\mathrm{Cd}(2)-\mathrm{O}(3) \mathrm{D}$	92.2(7)	$\mathrm{O}(4)-\mathrm{Cd}(2)-\mathrm{O}(6) \mathrm{D}$	85.9(7)
$\mathrm{N}(2)-\mathrm{Cd}(2)-\mathrm{O}(6) \mathrm{D}$	80.5(7)	$\mathrm{O}(5)-\mathrm{Cd}(2)-\mathrm{O}(6) \mathrm{D}$	171.7(7)
$\mathrm{O}(3) \mathrm{D}-\mathrm{Cd}(2)-\mathrm{O}(6) \mathrm{D}$	79.6(7)		

Symmetry codes for $1: \mathrm{A}=x+1 / 2,-y+3 / 2, z-1 / 2 ; \mathrm{B}=-x+1,-y+1,-z+1 ; \mathrm{C}=-x+3 / 2, y-1 / 2,-z+1 / 2 ; \mathrm{D}$ $=-x+1 / 2, y-1 / 2,-z+1 / 2$.

Table S2(b) Selected Bond Lengths [\AA] and Angles $\left[{ }^{\circ}\right]$ for the $\mathbf{2}$

Parameter	Value	Parameter	Value
$\mathbf{2}$			
$\mathrm{Cd}(1)-\mathrm{O}(1)$	$2.243(2)$	$\mathrm{Cd}(1)-\mathrm{O}(2)$	$2.463(2)$
$\mathrm{Cd}(1)-\mathrm{O}(3) \mathrm{A}$	$2.234(2)$	$\mathrm{Cd}(1)-\mathrm{O}(4) \mathrm{A}$	$2.526(2)$
$\mathrm{Cd}(1)-\mathrm{N}(1)$	$\mathrm{Cd}(1)-\mathrm{N}(3)$	$2.325(2)$	
$\mathrm{O}(3) \mathrm{A}-\mathrm{Cd}(1)-\mathrm{O}(1)$	$141.6(8)$	$\mathrm{O}(3) \mathrm{A}-\mathrm{Cd}(1)-\mathrm{N}(1)$	$98.6(7)$
$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{N}(1)$	$114.6(7)$	$\mathrm{O}(3) \mathrm{A}-\mathrm{Cd}(1)-\mathrm{N}(3)$	$104.9(8)$
$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{N}(3)$	$95.5(6)$	$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(3)$	$87.8(6)$
$\mathrm{O}(3) \mathrm{A}-\mathrm{Cd}(1)-\mathrm{O}(2)$	$107.8(9)$	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(2)$	$54.4(7)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(2)$	$92.7(7)$	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(2)$	$146.8(7)$
$\mathrm{O}(3) \mathrm{A}-\mathrm{Cd}(1)-\mathrm{O}(4) \mathrm{A}$	$53.8(6)$	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(4) \mathrm{A}$	$89.3(7)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{O}(4) \mathrm{A}$	$150.7(6)$	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(4) \mathrm{A}$	$107.5(7)$
$\mathrm{O}(2)-\mathrm{Cd}(1)-\mathrm{O}(4) \mathrm{A}$	$87.8(8)$		

Symmetry codes for 2: $\mathrm{A}=x,-y+3 / 2, z-1 / 2$.

Table S3 The BET surface area and porosity of $\mathbf{1}$ and $\mathbf{2}$

MOFs	BET surface area $\left(\mathrm{m}^{2} / \mathrm{g}\right)$	Porosity $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$
$\mathbf{1}$	3.414	0.0003
$\mathbf{2}$	0.453	0.0009

Fig. S1 The two coordination modes of $1,4-\mathrm{NDC}^{2-}$ ligands to form a $\left[\mathrm{Cd}_{2}\left(1,4-\mathrm{NDC}^{2-}\right)_{2}\right]_{\mathrm{n}}$ unit.

Fig. S2 (a) Each $\left[\mathrm{Cd}_{2}\left(1,4-\mathrm{NDC}^{2-}\right)_{2}\right]_{\mathrm{n}}$ unit binds to adjacent units to form a 3D framework; (b) The L1 ligands bridge two $\mathrm{Cd}(\mathrm{II})$ ions.

Fig. S3 Topological representation of the lvt network in $\mathbf{1}$ with $\left[\mathrm{Cd}_{2}\left(1,4-\mathrm{NDC}^{2-}\right)_{2}\right]_{\mathrm{n}}$ units selected as nodes.

Fig. S4 (a) The 1D waved chain $[\mathrm{Cd}(1,4-\mathrm{NDC})]_{\mathrm{n}}$ of 2; (b) The similar "V" shape 1D chain $[\mathrm{Cd}(\mathrm{L} 2)]_{\mathrm{n}}$ of $\mathbf{2}$.

Fig. S5 The simulated from single-crystal data, obtained from the experiment powder X-ray diffraction patterns of $\mathbf{1}$ and $\mathbf{2}$.

Fig. S6 The TG curves of $\mathbf{1}$ and $\mathbf{2}$.

Fig. S7 PXRD patterns of $\mathrm{Cd}(\mathrm{II})$-MOFs $(\mathbf{a}=\mathrm{MOF}-\mathbf{1} ; \mathbf{b}=\mathrm{MOF}-2)$ in different pH values in the range of $3 \sim 13$.

Fig. S8 PXRD patterns of Cd(II)-MOFs ($\mathbf{a}=\mathrm{MOF}-\mathbf{1} ; \mathbf{b}=$ MOF-2 $)$ soaking in aqueous solution for 30 days.

Fig. S9 Comparison of the quenching efficiency relative of $\mathbf{1}$ in different small organic molecules (the luminescence intensity of $\mathbf{1}$ in aqueous solution is the original value).

Fig. S10 The luminescence intensity of $\mathbf{1}$ after sensing experiments $\left(\mathbf{a}=\mathrm{ACAC} ; \mathbf{b}=\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right)$ five runs of recycling.

Fig. S11 The PXRD patterns $\left(\mathbf{a}=\mathbf{1}\right.$ after sensing ACAC for five cycles in $\mathrm{H}_{2} \mathrm{O} ; \mathbf{b}=\mathbf{1}$ after sensing $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ion for five cycles in $\mathrm{H}_{2} \mathrm{O}$).

Fig. S12 Comparison of the quenching efficiency relative of $\mathbf{1}$ in aqueous solution in the presence of different ions ($\mathbf{a}=$ metal ions; $\mathbf{b}=$ anions, the luminescence intensity of $\mathbf{1}$ in aqueous solution is the original value).

Fig. S13 Emission intensities of $\mathbf{1}$ dispersed in the aqueous solution of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ in the presence of different ions.

Fig. S14 IR spectra $\left(\mathbf{a}=\right.$ powder of $\mathbf{1} ; \mathbf{b}=$ powder of $\mathbf{1}$ in $\mathrm{H}_{2} \mathrm{O} ; \mathbf{c}=\mathbf{1}$ after sensing ACAC for five cycles in $\mathrm{H}_{2} \mathrm{O} ; \mathbf{d}=\mathbf{1}$ after sensing $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ion for five cycles in $\mathrm{H}_{2} \mathrm{O}$).

Fig. S15 The EDX patterns $\left(\mathbf{a}=\right.$ powder of $\mathbf{1} ; \mathbf{b}=\mathbf{1}$ after sensing for ACAC for five cycles in $\mathrm{H}_{2} \mathrm{O}$; $\mathbf{c}=\mathbf{1}$ after sensing $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ion for five cycles in $\mathrm{H}_{2} \mathrm{O}$).

Fig. S16 The UV-vis spectra ($\mathbf{a}=$ small organic molecules; $\mathbf{b}=$ metal ions; $\mathbf{c}=$ anions and the excitation spectra of $\mathbf{1}$).

