- Supplementary Material -

Thermodynamically stable and Metastable Coordination Polymers Synthesized from Solution and the Solid State

Tristan Neumann, Gianpiero Gallo, Inke Jess, Robert E. Dinnebier and Christian Näther

Content

Figure S1	IR- and Raman spectra of 1-Fe .	3
Figure S2	IR- and Raman spectra of 2-Fe/H2O.	3
Figure S3	View of a discrete complex in the crystal structure of 1-Fe with labeling and displacement ellipsoids drawn with 50% probability.	4
Figure S4	Crystal structure of 1-Fe with view along the crystallographic c-axis.	4
Figure S5.	Rietveld plot of 2-Fe/H₂O .	5
Figure S6	View of a discrete complex in the crystal structure of 2-Fe/H₂O .	5
Figure S7	Experimental XRPD pattern of 1-Fe , Pawley fit starting from the single crystal data and difference curve.	6
Figure S8	Experimental XRPD pattern of Fe(NCS) ₂ (4-picoline) ₄ . 4-picoline, Pawley fit starting from the single crystal data retrieved from literature.	6
Figure S9	Experimental XRPD pattern of 2-Fe/H₂O , Pawley fit and the difference curve.	7
Figure S10	DTG, TG and DSC curves for 1-Fe at different heating rates.	8
Figure S11	DTG, TG and DSC curves for 2-Fe/H₂O at different heating rates.	9
Figure S12	XRPD pattern of the residues obtained at the first and the second mass loss in the TG measurements of 2-Fe/H₂O and 1-Fe .	10
Figure S13	IR and Raman-spectra of 2-Fe/I .	10
Figure S14	Experimental XRPD pattern for 2-Fe/I and calculated pattern for $[Cd(NCS)_2(4-picoline)_2]_n$ retrieved from literature.	11
Figure S15	Rietveld plot of 2-Fe/I .	11
Figure S16	Calculated XRPD pattern for 2-Fe/H₂O and for 2-Fe/I together with the experimental pattern of samples obtained by heating 2-Fe/H₂O .	12
Figure S17	IR and Raman-spectra of 2-Fe/II.	12
Figure S18	Calculated XRPD pattern for 2-Fe/I and 2-Fe/II and powder pattern of samples obtained by using a rotary evaporator to remove the water from 2-Fe/H₂O .	13
Figure S19	Experimental XRPD pattern of 2-Fe/II obtained by evaporating H_2O from 2-Fe/H₂O in a rotary evaporator and calculated powder pattern for [Cu(NCS) ₂ (4-cyanopyridine) ₂] _n .	13
Figure S20	Rietveld plot of 2-Fe/II .	14
Figure S21	Experimental XRPD pattern of 1-Fe as function of temperature measured with Mo-K α radiation in an open capillary.	14
Figure S22	Raman-spectrum of 3-Fe .	15
Figure S23	Experimental and calculated powder pattern of 1-Cd .	15
Figure S24	IR- and Raman spectra of 1-Cd .	16

Figure S25	Experimental and calculated powder pattern of 2-Cd/I .	16		
Figure S26	IR- and Raman spectra of 2-Cd/I .			
Figure S27	DTG, TG and DSC curves of 1-Cd measured with 1°C/min, 4°C/min and 8°C/min.	17		
Figure S28	DTG, TG and DSC curves of 2-Cd/I measured with 1°C/min, 4°C/min and 8°C/min.	18		
Figure S29	IR- and Raman spectra of 3-Cd .	18		
Figure S30	XRPD pattern of 3-Fe and of the residue obtained from the second mass step of 1-Cd .	19		
Figure S31	XRPD pattern of the residues obtained in a TG measurement of 1-Cd with a heating rate of 1°C/min directly after the first mass step and at slightly higher temperatures and isolated after the first mass step in measurement at 8°C/min.	19		
Figure S32	Experimental and calculated powder pattern of 3-Cd .	20		
Figure S33	Rietveld plot for 3-Fe .	20		
Figure S34	Calculated XRPD pattern of 1-Cd and of 2-Cd/I and experimental pattern of the crystalline sample obtained by crystallization under kinetic control.	21		
Figure S35	IR- and Raman spectra of 2-Cd/III .	21		
Figure S36	Experimental XRPD pattern of 2-Cd/III obtained by kinetically controlled synthesis and calculated XRD pattern of $[Cd(NCS)_2(4-cyanopyridine)_2]_n$.	22		
Figure S37	Rietveld plot for 2-Cd/III .	22		
Figure S38	View on top of the chains of 2-Fe/II and 2-Cd/III .	23		
Figure S39	Packing diagram of 2-Fe/II and 2-Cd/III with the view along the chains.	23		
Figure S40	XRPD pattern of a mixture of 2-Fe/I and 2-Fe/II , which was stirred in a mixture of 24 Cyclohexane and MeCN for 1h, 1d, and 14d together with the calculated powder pattern of 2-Fe/I and 2-Fe/II .			
Figure S41	XRPD pattern of a mixture of 2-Fe/I and 2-Fe/II , which was stirred in a mixture of 24 cyclohexane and EtOH for 1h, 1d and 3d together with the calculated powder pattern of 2-Fe/I and 2-Fe/II .			
Figure S42	XRPD pattern of a mixture of 2-Cd/I and 2-Cd/III and of this mixture stirred in MeOH for 15 min together with the calculated powder pattern of 2-Cd/III and 2-Cd/I .	25		
Figure S43	XRPD pattern of the residues obtained from heating 2-Cd/III in a DSC.	25		
Figure S44	Energy-temperature diagram for 2-Fe/I and 2-Fe/II and for 2-Cd/I and 2-Cd/III.	26		
Figure S45	Heating rate dependent DSC measurements of 2-Fe/H₂O .	27		
Figure S46	Heating rate dependent DSC measurements of 1-Cd .	27		
Figure S47	Experimental XRPD pattern of the residues obtained before and after the exothermic signal observed in a DSC measurement of 2-Fe/H ₂ O with 1°C min and calculated pattern for 2-Fe/I and 2-Fe/II .	28		
Table S1	Selected crystal data and results of the structure refinements using single crystal data.	29		

Figure S1. IR- (top) and Raman spectra (bottom) of 1-Fe with the values for the C-N stretching vibrations.

Figure S2. IR- (top) and Raman spectra (bottom) of 2-Fe/H₂O with the values for the C-N stretching vibrations.

Figure S3. View of a discrete complex in the crystal structure of **1-Fe** with labeling and displacement ellipsoids drawn with 50% probability.

Figure S4. Crystal structure of **1-Fe** with view along the crystallographic *c*-axis. The disordered solvent molecules are located in channels along this axis.

Figure S5. Rietveld plot of 2-Fe/H₂O. The observed pattern (blue circles) was measured in Debye-Scherrer geometry, the best Rietveld fit profiles (red line), the difference curve between the observed and the calculated profiles (grey line) and calculated peak positions for Fe(NCS)₂(4-picoline)₂(H₂O)₂ (black) are shown. The high angle part starting at 25° in 2θ is enlarged for clarity.

Figure S6. View of a discrete complex in the crystal structure of 2-Fe/H₂O.

Figure S7. Experimental XRPD pattern of **1-Fe** measured with Cu-Kα1 radiation. (black), Pawley fit starting from the single crystal data (red) and difference curve (blue).

Figure S8. Experimental XRPD pattern of Fe(NCS)₂(4-picoline)₄. 4-picoline (black), Pawley fit starting from the single crystal data retrieved from literature (red) and the difference curve (blue).

Figure S9. Experimental XRPD pattern of **2-Fe/H₂O** (black), Pawley fit (red) and the difference curve (blue).

Figure S10. DTG, TG and DSC curves for 1-Fe at a) 0.2°C/min, b) 1°C/min, c) 4°C/min and d) 8°C/min.

Figure S11. DTG, TG and DSC curves for 2-Fe/H₂O at a) 0.2°C/min, b) 1°C/min, c) 4°C/min and d) 8°C/min.

Figure S12. XRPD pattern of the residues obtained at the first (A and B) and the second mass loss (C and D) in the TG measurements of **2-Fe/H₂O** and **1-Fe** measured with Cu-K α_1 radiation.

Figure S13. IR- (top) and Raman-spectra (bottom) of **2-Fe/I** with the values for the C-N stretching vibrations.

Figure S14. Experimental XRPD pattern for **2-Fe/I** measured with Cu-K α_1 radiation and calculated pattern for [Cd(NCS)₂(4-picoline)₂]_n retrieved from literature.

Figure S15. Rietveld plot of **2-Fe/I**. The observed pattern (circles) measured in Debye-Scherrer geometry, the best Rietveld fit profiles (line) and the difference curve between the observed and the calculated profiles (below) are shown. The high angle part starting at 25° in 2 θ is enlarged for clarity.

Figure S16. Calculated XRPD pattern for **2-Fe/H₂O** (A) and for **2-Fe/I** (E) together with the experimental pattern measured with Cu-K α_1 radiation of samples obtained by heating **2-Fe/H₂O** at 75°C for 43h (B), 91h (C) and 10d (D).

Figure S17. IR- (top) and Raman-spectra (bottom) of 2-Fe/II with the values for the C-N stretching vibrations.

Figure S18. Calculated XRPD pattern for **2-Fe/I** (A) and **2-Fe/II** (D) and powder pattern of samples obtained by using a rotary evaporator to remove the water from **2-Fe/H₂O** (B and C).

Figure S19. Experimental XRPD pattern of **2-Fe/II** measured with Cu-K α_1 radiation obtained by evaporating H₂O from **2-Fe/H₂O** in a rotary evaporator (A) and calculated powder pattern for [Cu(NCS)₂(4-cyanopyridine)₂]_n (B).

Figure S20. Rietveld plot of **2-Fe/II**. The observed pattern (circles) measured in Debye-Scherrer geometry, the best Rietveld fit profiles (line) and the difference curve between the observed and the calculated profiles (below) are shown. The high angle part starting at 25° in 2θ is enlarged for clarity.

Figure S21. Experimental XRPD pattern of **1-Fe** measured as function of temperature measured with Mo-Kα radiation in an open capillary. As guide to the eye the calculated powder pattern of **1-Fe** is given in red.

Figure S22. Raman-spectrum of 3-Fe with the values for the CN-stretching vibrations.

Figure S23. Experimental (A) and calculated (B) powder pattern of **1-Cd**. (Cu-K α_1 radiation).

Figure S24. IR- (top) and Raman-spectra (bottom) of 1-Cd with the values for the C-N stretching vibrations.

Figure S25. Experimental (A) and calculated (B) powder pattern of **2-Cd/I** (Cu-Kα₁ radiation).

Figure S26. IR- (top) and Raman-spectra (bottom) of 2-Cd/I with the values for the C-N stretching vibrations.

Figure S27. DTG, TG and DSC curves of **1-Cd** measured with 1°C/min, 4°C/min and 8°C/min (left to right). Given are the mass loss in percent and the peak temperatures (T_P).

Figure S28. DTG, TG and DSC curves of **2-Cd/I** measured with 1°C/min, 4°C/min and 8°C/min (left to right). Given are the mass loss in percent and the peak temperatures (T_P).

Figure S29. IR- (top) and Raman-spectra (bottom) of **3-Cd** with the values for the C-N stretching vibrations.

Figure S30. XRPD pattern of **3-Fe** (A) and of the residue obtained from the second step of **1-Cd** (B) measured with Cu-K α_1 radiation.

Figure S31. XRPD pattern (Cu-Kα₁ radiation) of the residues obtained in a TG measurement of 1-Cd with a heating rate of 1°C/min directly after the first mass step (A) and at slightly higher temperatures (B) and isolated after the first mass step of a measurement at a heating rate of 8°C/min (C) and the calculated pattern of 2-Cd/I (D).

Figure S32. Experimental (A) and calculated powder pattern of 3-Cd (B) measured with Cu-K α_1 radiation.

Figure S33. Rietveld plot for 3-Fe. The observed pattern (blue circles) measured in Debye-Scherrer geometry, the best Rietveld fit profiles (red line), the difference curve between the observed and the calculated profiles (grey line) and calculated peak positions for [Fe(NCS)₂(4-picoline)]_n (black) and [Fe(NCS)₂(4-picoline)₂]_n (MOD2 - 2-Fe/I) (blue) are shown. The high angle part starting at 25° in 2θ is enlarged for clarity.

Figure S34. Calculated XRPD pattern of 1-Cd (A) and of 2-Cd/I (C) and experimental pattern of the crystalline sample obtained by crystallization under kinetic control (B) measured with Cu-K α_1 radiation.

Figure S35. IR- (top) and Raman-spectra (bottom) from 2-Cd/III with the values for the C-N stretching vibrations.

Figure S36. Experimental XRPD pattern (Cu-K α_1 radiation) of **2-Cd/III** obtained by kinetically controlled synthesis (A) and calculated pattern of [Cd(NCS)₂(4-cyanopyridine)₂]_n (B).

Figure S37. Rietveld plot of **2-Cd/III**. The observed pattern (blue circles) measured in Debye-Scherrer geometry, the best Rietveld fit profiles (red line), the difference curve between the observed and the calculated profiles (grey line) and calculated peak positions (black) are shown. The high angle part starting at 50° in 20 is enlarged for clarity.

Figure S38. View on top of the chains of 2-Fe/II (top) and 2-Cd/III (bottom).

Figure S39. Packing diagram of 2-Fe/II (left) and 2-Cd/III (right) with view along the chains.

Figure S40. XRPD pattern of a mixture of 2-Fe/I and 2-Fe/II (A) which was stirred in a mixture of cyclohexane (1.5 mL) and MeCN (200 μL) for 1h (B), 1d (C) and 14d (D) measured with Cu-Kα₁ radiation together with the calculated powder pattern of 2-Fe/I (E) and 2-Fe/II (F).

Figure S41. XRPD pattern of a mixture of **2-Fe/I** and **2-Fe/II** (A) which was stirred in a mixture of cyclohexane (2.0 mL) and EtOH (40 μL) for 1h (B), 1d (C) and 3d (D) together with the calculated powder pattern of **2-Fe/I** (E) and **2-Fe/II** (F) measured with Cu-Kα₁ radiation.

Figure S42. XRPD pattern of a mixture of **2-Cd/I** and **2-Cd/III** (A) and of this mixture stirred in MeOH for 15 min (D) measured with Cu-K α_1 radiation together with the calculated powder pattern of **2-Cd/III** (B) and **2-Cd/I** (C).

Figure S43. XRPD pattern (Cu-K α_1 radiation) of the residues obtained by heating **2-Cd/III** to point 4 (A), point 5 (C) and point 6 (E; see Figure 6 in the manuscript) together with the calculated pattern of **2-Cd/III** (B), **2-Cd/I** (C) and of **3-Cd** (F).

Figure S44. Energy-temperature diagram for 2-Fe/I and 2-Fe/II (top) and for 2-Cd/I and 2-Cd/III (bottom).

Figure S45. Heating rate dependent DSC measurements of **2-Fe/H₂O** with a) 1°C/min, b) 5°C/min, c) 10°C/min and d) 20°C/min.

Figure S46. Heating rate dependent DSC measurements of **1-Cd** with heating rates of 1°C/min (top left), 5°C/min (top right) and 10°C/min (bottom left).

Figure S47. Experimental XRPD pattern of the residues obtained before (A) and after (B) the exothermic signal observed in a DSC measurement of 2-Fe/H₂O with a heating rate of 1°C min measured with Cu-Kα₁ radiation and calculated pattern for 2-Fe/I (C) and 2-Fe/II (D).

Compound	1-Fe	3-Cd	
Sum formula	$C_{26}H_{28}FeN_6S_2$	C ₈ H ₇ CdN ₃ S ₂	
Molecular weight / g mol ⁻¹	544.51	321.6957	
Crystal system	trigonal	triclinic	
Space group	R3	РĪ	
Wavelength / Å	0.71073	0.71073	
a / Å	27.693 (3)	5.8783 (5)	
b / Å	27.693 (3)	10.3023 (10)	
c / Å	11.1885 (10)	10.5662 (10)	
α/°	90	71.108 (11)	
6/°	90	78.415 (11)	
γ/°	120	74.975 (11)	
V / ų	7430.7 (17)	579.92 (11)	
Т/К	293	200	
Z	9	2	
$D_{calc}/g \text{ cm}^{-3}$	1.095	1.842	
μ / mm ⁻¹	0.604	2.21	
Crystal size / mm	0.08 x 0.06 x 0.04	0.11 x 0.08 x 0.07	
Data collection	IPDS 2	IPDS 1	
Absorption correction	numerical	numerical	
θ_{max}	25.1	27.504	
Refl. collected	7472	8372	
Unique refl.	2951	2609	
R _{int}	0.043	0.083	
Refl. $[F_{\circ} > 4\sigma(F_{\circ})]$	1855	2268	
parameters	160	164	
$R_1[F_0>4\sigma(F_0)]$	0.0676	0.036	
wR ₂ (for all data)	0.171	0.091	
GOF	1.04	1.003	
T _{min} , T _{max}	0.9192, 0.9606	0.6013, 0.7991	
$\Delta \rho_{max}$, $\Delta \rho_{min}$ / eÅ ⁻³	0.480 and -0.312	0.684 and -1.639	

Table S1. Selected crystal data and results of the structure refinements using single crystal data.

Compound	2-Fe/H ₂ O	2-Fe/I	2-Fe/II	3-Fe	2-Cd/III
Sum formula	$FeC_{14}H_{18}O_2N_4S_2$	$FeC_{14}H_{14}N_4S_2$	$FeC_{14}H_{14}N_4S_2$	$FeC_8H_7N_3S_2$	$CdC_{14}H_{14}N_4S_2$
Molecular weight / g mol ⁻¹	394.30	358.26	358.26	265.11	414.82
Crystal system	monoclinic	monoclinic	monoclinic	triclinic	monoclinic
Space group	P21/c	C2/c	P21/c	ΡĪ	P21/n
Wavelength/ Å	0.7093	0.7093	0.7093	0.7093	1.5406
a / Å	10.2833(6)	20.2576(8)	11.2197(16)	5.6544(4)	5.83966(12)
b / Å	12.3146(6)	9.3191(3)	17.949(2)	10.3052(8)	17.8924(4)
<i>c</i> / Å	7.6860(3)	19.2831(6)	9.0538(12)	10.4498(7)	8.6365(2)
α / °	90	90	90	70.083(5)	90
в / °	103.823(4)	116.135(2)	112.712(7)	78.969(7)	108.751(2)
γ/°	90	90	90	75.518(4)	90
V / Å ³	945.12(8)	3268.1(2)	1681.9(4)	550.52(7)	854.49(3)
т / к	298	298	298	298	298
Z	2	8	4	2	2
refined parameters	40	59	50	55	47
D _{calc} / g cm ⁻³	1.371	1.456	1.415	1.581	1.612
Rwp/% ^[a]	3.82	2.23	2.44	3.12	2.76
R _p / % ^[a]	2.97	1.68	1.91	2.50	2.00
R _{Bragg} / % ^[a]	2.18	0.98	0.68	1.46	1.72
Starting angle measured / ° 2 ϑ	2	2	2	2	3
Final angle measured / ° 2 θ	50	50	50	50	80
Starting angle used / ° 2 θ	2	2	3	2	6
Final angle used / ° 2 θ	40	40	30	40	80
Step width (° 2 θ)	0.015	0.015	0.015	0.015	0.015
Time / hrs	16	16	16	16	6

 Table S2.
 Selected crystal data and results of the Rietveld refinements.