High-performance Spinel NiMn₂O₄ Hierarchical Microspheres Self-

assembled with Nanosheets by Microwave-assisted Synthesis for

Supercapacitor

Yin Sun, Junjie Zhang, Xiannian Sun*, Naibao Huang* (College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China)

Tab.S1 The elemental content distribution of NiMn₂O₄ determined by XPS.

Element	Ni	Mn	0
Atomic %	14.61	28.93	56.46

Fig.S1 N₂ adsorption-desorption isotherm of the as-prepared NiMn₂O₄ (Insert shows the pore size distribution curve).

Structure of NiMn ₂ O ₄ based material	Method of synthesis	Specific capacitance	Retention	Electrolyte	Potential window	Reference
NiMn ₂ O ₄	Sol-gel process	243 F/g (5mV/s)	96 % (5000 cycles @ 20mV/s)	1 M Na ₂ SO ₄	$-0.2\sim 0.8 \ V$	1
NiMn ₂ O ₄	Spray pyrolysis	460 F/g (5mV/s)	92.97 % (1000 cycles @ 2A/g)	2 M KOH	$-0.2\sim 0.4 \ V$	2
NiMn ₂ O ₄	Hydrothermal	662 F/g (1A/g)	95.7 % (1000 cycles @ 10A/g)	6 M KOH	$-0.2\sim 0.6~V$	3
NiMn ₂ O ₄	Electrospinning process	410 F/g (1A/g)	~95% (5000 cycles@ 5A/g)	1M KCl	$0 \sim 1 \ V$	4
Ni-Mn-O	Hydrothermal	284 F/g (5mV/s)	96% (1500 cycles@ 50mV/s)	2 M NaCl	$0 \sim 1 \ V$	5
C@NiMn ₂ O ₄	Hydrothermal	471 F/g (1A/g)	89.6% (5000 cycles@ 10A/g)	2 М КОН	$0 \sim 0.45 \ V$	6
RGO/NiMn ₂ O ₄	Coprecipitation	693 F/g (1A/g)	91.4 % (2000 cycles @ 5A/g)	1 M Na ₂ SO ₄	$0 \sim 0.9 V$	7
NiMn ₂ O ₄	Microwave assisted hydrothermal	768.9 F/g (1A/g)	85.8% (6000 cycles @ 5A/g)	6 M KOH	-0.2 ~ 0.45 V	This work

Tab.S2 Supercapacitor performances of NiMn₂O₄-based electrode materials prepared by different methods reported in the literature.

Parameter	Value	Deviation
$R_1(\Omega)$	0.096	0.223
C ₂ (F)	0.113	0.269
$R_2(\Omega)$	0.103	1.481
C ₃ (F)	0.128	0.196
$R_3(\Omega)$	0.102	0.439

Tab.S3 Summary the values of different components in the fitting of EIS data.

References

- M. Zhang, S. Guo, L. Zheng, G. Zhang, Z. Hao, L. Kang and Z.-H. Liu, *Electrochimica Acta*, 2013, 87, 546-553.
- U. J. Chavan and A. A. Yadav, Journal of Materials Science: Materials in Electronics, 2016, 28, 4958-4964.
- 3. H. M. Wei, J. X. Wang, L. Yu, Y. Y. Zhang, D. W. Hou and T. F. Li, *Ceramics International*, 2016, **42**, 14963-14969.
- 4. J. Bhagwan, S. Rani, V. Sivasankaran, K. L. Yadav and Y. Sharma, *Applied Surface Science*, 2017, **426**, 913-923.
- 5. C. H. Wu, J. S. Ma and C. H. Lu, *Current Applied Physics*, 2012, **12**, 1190-1194.
- 6. M. R. Kim, R. M. NaiduKalla, S. Kim, M.-R. Kim and I. Kim, *ChemElectroChem*, 2017, 4, 1214-1221.
- 7. Z. Wang, Z. Zhu, C. Zhang, C. Xu and C. Chen, *Electrochimica Acta*, 2017, **230**, 438-444.