SUPPORTING INFORMATION

Supramolecular Stacking in a High Z' Calix[8]arene – Porphyrin Assembly

Jimi M. Alex, Patrick McArdle, Peter B. Crowley*

School of Chemistry, National University of Ireland, University Road, Galway, H91 TK33, Ireland

*Correspondence to: peter.crowley@nuigalway.ie +353 91 49 24 80

Keywords

ACORN, molecular recognition, sulfonatocalix[8]arene, self-assembly, trimethylanilinium-porphyrin

Materials and Methods

Samples. *Saccharomyces cerevisae* cytc C102T was produced by established methods.¹ Stock solutions of **tmap** (Frontier Scientific T973) and **sclx**₈ (TCI Chemicals S0471) at pH 6.0 were prepared in 10 mM NaOH or water, respectively.

Co-crystallization Trials. A sparse matrix screen (Jena Biosciences JCSG++, 96 conditions) and an Oryx8 robot (Douglas Instruments) were used for the crystallization experiments. Protein – ligand mixtures were prepared by combining 1 mM cyt*c*, 6.5 mM **tmap** and 5 – 20 mM **sclx**₈. A single crystal grew in condition A11 (50 % 2-methyl-2,4-pentanediol, 0.1 M TRIS-HCl pH 8.5 and 0.2 M ammonium dihydrogen phosphate) at 10 mM **sclx**₈ (Fig S1).

Data collection. A crystal of ~400 μ m dimension in the mother liquor was cryo-cooled in liquid nitrogen. Diffraction data were collected at SOLEIL synchrotron (France) to 1.0 Å with ϕ scans of 0.1 ° over 360 ° using an Eiger X 9M detector.

X-ray structure determination. The observed reflections were processed with the autoPROC pipeline² and scaled using POINTLESS³ and AIMLESS.⁴ *Ab initio* phasing in ACORN (CCP4 suite) was used to generate the map,⁶ with unambiguous density for **tmap** and **sclx**₈. The coordinates and restraints for **tmap** and **sclx**₈ were generated using the Grade Web Server.⁷ Iterative cycles of model building in COOT and refinement in REFMAC were used to generate the initial model. The PDB2INS program was used to generate the initial Shelx files.⁸ The refinement (full-matrix least squares on F²) was completed in ShelxL (version 2018/3).⁹ The water molecules were removed and the PLATON-SQUEEZE¹⁰ procedure was used to remove diffraction from the void which led to improved refinement statistics. Crystallographic data for the structure with and without the Platon-Squeeze procedure have been deposited at the Cambridge Crystallographic Data Centre with deposition numbers CCDC 1956108 and 1956128, respectively.

UV/vis Spectroscopy. Spectra were acquired on a Perkin Elmer Lambda 35 spectrometer at 20° C. Experiments were performed in 0.1 M Tris-HCl pH 8.5, at a fixed porphyrin concentration (3 μ M) and varying calixarene concentrations (0 - 4.5 μ M).

Fig S1. A single ~400 μ m crystal grew in a protein-rich phase (red colour).

Fig S2. In the **sclx**₈ – **tmap** co-crystal, **(A)** the peripheral porphyrins were planar, while **(B)** the stacking porphryins were puckered.

Fig S3. UV/vis spectra of 3 μ M **tmap** in the presence of 0 - 4.5 μ M **sclx**₈, in 0.1 M TRIS-HCl pH 8.5. The Soret band shifts from 412 to 418 nm during the course of the titration.

	Before Platon-Squeeze	After Platon-Squeeze
Empirical formula	$C_{313}H_{317}N_{24}O_{149.50}S_{16}$	$C_{313} H_{317} N_{24} O_{77} S_{16}$
Formula weight	7319.85	6159.85
Temperature	100 K	
Wavelength	0.82656 Å	
Crystal system	Monoclinic	
Space group	P2 ₁	
Unit cell dimensions	a = 33.621 (17) Å	
	b = 38.411 (13) Å	
	c = 40.234 (15) Å	
	β = 102.56 (4) °	
Volume (ų)	50715 (37)	
Z	4	
Density (calculated; mg/m ³)	0.959	0.807
Absorption coefficient (μ, mm ⁻¹)	0.205	0.177
F(000)	15260	12940
Crystal size (mm ³)	0.20 x 0.05 x 0.05	
Theta range for data collection	0.603 to 28.132°	
Index ranges	-37 ≤ h ≤ 38, -40 ≤ k ≤ 40, -42 ≤ l ≤ 40	
Reflections collected	367899	
Independent reflections	119907 [R(int) = 0.0572]	
% Completeness to Theta = 28.132°	78.8	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	119907 / 15387 / 8137	119907 / 15381 / 7557
Goodness-of-fit on F ²	1.627	0.940
Final R indices [I > 2sigma(I)]	R1 = 0.1837, wR2 = 0.4178	R1 = 0.0831, wR2 = 0.2284
R indices (all data)	R1 = 0.2282, wR2 = 0.4651	R1 = 0.1191, wR2 = 0.2815
Absolute structure parameter	0.497 (16)	0.495 (15)
Largest diff. peak and hole (e/Å ³)	1.375 and -0.517	0.413 and -0.223
CCDC deposition numbers	1956108	1956128

Table S1. X-ray data collection and refinement statistics for $sclx_8 - tmap$.

	CCDC ID	Reference
1	VEQJUX	11
2	BIWSIK	12
3	BOBBUQ	12
4	GAGZEV	13
5	BUSNIN	14
6	IYOCIJ	15
7	SAZKEL	16
8	SAZKIP	16
9	ZECRAC	17
10	PEPLED	18
11	WALQOS	19
12	FEBJUU	20

Table S2. Crystal structures in CCDC with number of atoms \ge 999

References

- 1. P. B. Crowley, P. Ganji, and H. Ibrahim, *ChemBioChem*, 2008, 9, 1029.
- C. Vonrhein, C. Flensburg, P. Keller, A. Sharff, O. Smart, W. Paciorek, T. Womack and G. Bricogne, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2011, D67, 293.
- 3. P. R. Evans, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2011, D67, 282.
- 4. P. R. Evans and G. N. Murshudov, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2013, D69, 1204.
- 5. A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni and R. J. Read, *J. Appl. Crystallogr.*, 2007, **40**, 658.
- 6. E. J. Dodson and M. M. Woolfson, Acta Crystallogr D Biol Crystallogr., 2009, D65, 881.
- P. Emsley, B. Lohkamp, W. G. Scott and K. Cowtan, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, D66, 486.
- 8. A. V. Lübben and G. M. Sheldrick. J. Appl. Cryst., 2019, 52, 669.
- 9. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, C71, 13.
- 10. A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, D65, 148.
- K. Tsukamoto, H. Ohishi, Y. Hiyama, N. Maezaki, T.Tanaka and T. Ishida. *Chem. Commun.*, 2006, 51, 3606.
- 12. M. Dincă, A. Dailly, C. Tsay, and J. R. Long. Inorg. Chem., 2008, 47, 11.
- O. K. Farha, A. Ö. Yazaydın, I. Eryazici, C. D. Malliakas, B. G. Hauser, M. G. Kanatzidis, S. T. Nguyen,
 R. Q. Snurr and J. T. Hupp. *Nat. Chem.*, 2010, **2**, 944.
- 14. J.-P. Collin, F. Durola, J.Frey, V. Heitz, F. Reviriego, J.-P. Sauvage, Y. Trolez and K. Rissanen. J. Am. Chem. Soc., 2010, **132**, 6840.
- 15. H. Wang, K. Qian, K. Wang, Y. Bian, J. Jiang and S. Gao. Chem. Commun., 2011, 47, 9624.
- 16. J.-D. Leng, J.-L. Liu and M.-L. Tong. Chem. Commun., 2012, 48, 5286.
- 17. R. Grünker, V. Bon, A. Heerwig, N., Klein, P. Müller, U. Stoeck, I. A. Baburin, U. Mueller, I. Senkovska, and S. Kaskel. *Chem. Eur. J.*, 2012, **18**, 13299.
- 18. M. Hutin, C. Yvon, J. Yan, A. Macdonell, D.-L. Long and L. Cronin. CrystEngComm, 2013, 15, 4422.
- 19. D. C. Gary, S. E. Flowers, W. Kaminsky, A. Petrone, X. Li, and B. M. Cossairt. *J. Am. Chem. Soc.*, 2016, **138**, 1510.
- 20. Q. Lin, J. Li, Y. Dong, G. Zhou, Y. Song and Y. Xu. Dalton Trans., 2017, 46, 9745.