Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2020

## **Electronic Supplementary Information**

## Mg<sub>0.8</sub>Zn<sub>0.2</sub>O Microspheres: Preparation, Characterization and Application for Degrading Organic Dyes

Yajun Zheng,<sup>[a],[b]</sup> Liyun Cao,<sup>[b]\*</sup> Gaoxuan Xing,<sup>[a]</sup> Jianfeng Huang,<sup>[b]</sup> and Zhiping Zhang<sup>[a],[c]\*</sup>

- <sup>[a]</sup> School of Chemistry and Chemical Engineering, Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China; Fax: +86 29 8838 2693; Tel: +86 29 8838 2694; E-mail: zhangzp0304@gmail.com (Z. Zhang).
- <sup>[b]</sup> School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; E-mail: caoliyun@sust.edu.cn (L. Cao).
- <sup>[c]</sup> State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China



*Figure S1.* Residual concentration of 300 mg L<sup>-1</sup> methylene blue aqueous solution after treatment with Mg/Zn binary oxides by varying the molar percentages of  $Zn(NO_3)_2$  in preparation (light source: UV light; irradiation period: 90 min).



*Figure S2.* UV-vis spectra of methylene blue aqueous solution after treatment under different conditions as marked upon irradiation in [(a), (b) and (c)] UV light (initial concentration: 300 mg L<sup>-1</sup>; solution volume: 50 mL; catalyst amount: 25 mg; irradiation period: 90 min) and [(a'), (b') and (c')] visible light (initial concentration: 100 mg L<sup>-1</sup>; solution volume: 50 mL; catalyst amount: 50 mg; irradiation period: 90 min). It should be mentioned that for the methylene blue solutions after treatment with UV light, they were diluted 50 times prior to the measurement of UV-visible spectrometer, whereas they were diluted 20 times for the system with visible light irradiation.



*Figure S3.* Comparison of the performance of developed spherical  $Mg_{0.8}Zn_{0.2}O$  particles with other related state-of-the-art photocatalysts (a) in degradation of 50 mL of 300 mg L<sup>-1</sup> methylene blue aqueous solution upon UV light irradiation (irradiation time: 90 min; catalyst amount: 25 mg; solution pH: 4.39) and (b) in degradation of 50 mL of 100 mg L<sup>-1</sup> methylene blue aqueous solution upon visible light irradiation time: 90 min; catalyst amount: 50 mg; solution upon visible light irradiation (irradiation time: 90 min; catalyst amount: 50 mg; solution pH: 5.47).



*Figure S4.* Photocatalytic degradation of MB over various photocatalysts upon irradiation in (**a**) UV light (initial concentration:  $300 \text{ mg L}^{-1}$ ; solution volume: 50 mL; catalyst amount: 25 mg) and (**b**) visible light (initial concentration:  $100 \text{ mg L}^{-1}$ ; solution volume: 50 mL; catalyst amount: 50 mg).



*Figure S5.* UV-vis spectra of 50 mL mixed dye solution (MB, Congo red, thymol blue, bromothymol blue, and eriochrome black T) being treated with Mg<sub>0.8</sub>Zn<sub>0.2</sub>O, ZnO, P25 TiO<sub>2</sub>, N-doped TiO<sub>2</sub>, MgO, *g*-C<sub>3</sub>N<sub>4</sub>, BiVO<sub>4</sub>,  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, and WO<sub>3</sub> upon irradiation in (**a**) UV light (concentration of each dye: 300 mg L<sup>-1</sup>; catalyst amount: 25 mg; solution pH: 4.39) and (**b**) visible light (concentration of each dye: 300 mg L<sup>-1</sup>; catalyst amount: 50 mg; solution pH: 5.47) for 90 min.



**Figure S6.** UV-vis spectra of 50 mL mixed solution (MB, Congo red, thymol blue, bromothymol blue, and eriochrome black T) with each dye concentration of 300 mg L<sup>-1</sup> being treated with different catalysts: (**a**) spherical  $Mg_{0.8}Zn_{0.2}O$ , (**b**) ZnO, (**c**)  $P25 TiO_2$ , (**d**) N-doped  $TiO_2$ , (**e**) MgO, (**f**) g- $C_3N_4$ , (**g**)  $BiVO_4$ , (**h**)  $\alpha$ - $Fe_2O_3$ , and (**i**)  $WO_3$  upon UV light irradiation (— means the solution before treatment, and — means the solution after treatment with 90 min; insets are the photographic images of the corresponding solutions after 0 min and 90 min; catalyst amount: 25 mg).



**Figure S7.** UV-vis spectra of 50 mL mixed solution (MB, Congo red, thymol blue, bromothymol blue, and eriochrome black T) with each dye concentration of 100 mg L<sup>-1</sup> being treated with different catalysts: (a) spherical  $Mg_{0.8}Zn_{0.2}O$ , (b) ZnO, (c)  $P25 TiO_2$ , (d) N-doped  $TiO_2$ , (e) MgO, (f) g- $C_3N_4$ , (g)  $BiVO_4$ , (h)  $\alpha$ - $Fe_2O_3$ , and (i)  $WO_3$  upon visible light irradiation (— means the solution before treatment, and — means the solution after treatment with 90 min; insets are the photographic images of the corresponding solutions after 0 min and 90 min; catalyst amount: 50 mg).



*Figure S8.* Effects of different scavengers on the photocatalytic degradation of methylene blue percentage over developed  $Mg_{0.8}Zn_{0.2}O$  under visible light irradiation with variation in pH values of methylene blue aqueous solutions: (a) pH 2, (b) pH 6, and (c) pH 12 [initial concentration of methylene blue solution: 100 mg L<sup>-1</sup>; volume: 50 mL; catalytic period: 90 min; catalyst amount: 50 mg; to study the roles of different active species, ammonium oxalate (AO, 5.0 mmol L<sup>-1</sup>), t-butanol (BT, 5.0 mmol L<sup>-1</sup>), and 1,4-benzoquinone (BQ, 1.0 mmol L<sup>-1</sup>) were the scavengers for holes (h<sup>+</sup>), hydroxyl radicals (•OH), and superoxide radicals ( $O_2^{\bullet-}$ ), respectively].



**Figure S9.** Optically microscopic images of (a) and (a') as-synthesized  $Mg_{0.8}Zn_{0.2}O$  (b) without use and (b') the collected product after one cycle for degrading 100 mg L<sup>-1</sup> of methylene blue solution with pH = 2 upon irradiation in visible light.



**Figure S10.** Optically microscopic images of **(a)** as-synthesized  $Mg_{0.8}Zn_{0.2}O$  without use and **(b)** the collected product after six recycles for degrading 100 mg L<sup>-1</sup> of methylene blue solution upon irradiation in visible light.



**Figure S11.** XRD patterns of recycled products as indicated in this figure (note: \* means the diffraction peaks of MgO, and  $\Delta$  means the diffraction peaks of ZnO in the products).



**Figure S12.** Photographic images of 50 mL of 100 mg L<sup>-1</sup> methylene blue solution after being treated with visible light irradiation for 90 min in the presence of **(a)**  $Mg_{0.8}Zn_{0.2}O$  and **(b)** P25 TiO<sub>2</sub> (after photocatalysis, the solutions have been maintianed constant for 30 min without any stirring), and the supernatant solutions from the systems with **(c)**  $Mg_{0.8}Zn_{0.2}O$  and **(d)** P25 TiO<sub>2</sub> (catalyst amount: 50 mg).



*Figure S13.* N<sub>2</sub> adsorption–desorption isotherms and pore size distributions (insets) of the generated product with different Mg/Zn ratios: (a) MgO, (b) Mg<sub>0.9</sub>Zn<sub>0.1</sub>O, (c) Mg<sub>0.8</sub>Zn<sub>0.2</sub>O, (d) Mg<sub>0.7</sub>Zn<sub>0.3</sub>O, (e) Mg<sub>0.5</sub>Zn<sub>0.5</sub>O, (f) Mg<sub>0.2</sub>Zn<sub>0.8</sub>O, and (g) ZnO.



*Figure S14. XRD* patterns of the generated products with different Mg/Zn ratios as indicated in this figure.



**Figure S15.** (a) UV DRS and (b) plot of  $(\alpha h \upsilon)^2$  vs  $(h \upsilon)$  of the generated products with different Mg/Zn ratios as indicated in this figure.



Figure S16. Cyclic voltammetry measurement for (a) MgO, (b) ZnO, and (c) Mg<sub>0.8</sub>Zn<sub>0.2</sub>O.

Table S1. Comparison of different Mg/Zn binary oxides in degradation of organic dyes or others

| irrent |  |
|--------|--|
|        |  |
| work   |  |
| [1]    |  |
| [2]    |  |
| [3]    |  |
| [4]    |  |
| [5]    |  |
| [6]    |  |
| [7]    |  |
| [8]    |  |
| [9]    |  |
| [10]   |  |
| [11]   |  |
| [12]   |  |
|        |  |

Note: n/a means not available.

| Mg/Al oxides                                          | light         | solution<br>volume | catalyst<br>dosage | dye                                                                                                        | concentration   | Reference               |  |
|-------------------------------------------------------|---------------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|--|
| Mg <sub>0.8</sub> Zn <sub>0.2</sub> O<br>microspheres | UV light      | 50 mL              | 25 mg              | methylene blue, Congo<br>red, thymol blue,<br>bromothymol blue,                                            | 300 mg/L        | g/L current<br>g/L work |  |
|                                                       | visible light | 50 mL              | 50 mg              | eriochrome black T and<br>their mixtures                                                                   | 100 mg/L        |                         |  |
| MgO<br>microspheres                                   | UV light      | 20 mL              | 10 mg              | methylene blue, Congo<br>red, thymol blue,<br>bromothymol blue,<br>eriochrome black T and<br>their mixture | ,<br>, 100 mg/L | [13]                    |  |
| MgO nanorods                                          | visible light | 150 mL             | 2 mg               | methylene blue                                                                                             | 25 mg/L         | [14]                    |  |
| MgO<br>nanoparticles                                  | UV light      | 250 mL             | 60 mg              | methylene blue                                                                                             | 20 mg/L         | [15]                    |  |
| MgO<br>nanoparticles                                  | UV light      | 100 mL             | 50 mg              | methyl orange and methylene blue                                                                           | 15 mg/L         | [16]                    |  |
| MgO<br>nanospheres                                    | UV light      | 50 mL              | 4 mg               | indigo carmine                                                                                             | 15 mg/L         | [17]                    |  |
| MgO<br>nanoflake                                      | UV light      | 100 mL             | 200 mg             | methyl orange                                                                                              | 10 mg/L         | [18]                    |  |
| MgO nanoflake                                         | UV light      | 25 mL              | 10 mg              | methylene blue                                                                                             | 10 mg/L         | [19]                    |  |
| MgO nanofibre                                         | UV light      | 5 mL               | 20 mg              | reactive yellow                                                                                            | 10 mg/L         | [20]                    |  |
| MgO<br>nanoparticles                                  | UV light      | 50 mL              | 50 mg              | methylene blue, methy<br>orange, acid orange 7<br>and rhodamine 6G                                         | l<br>7 5 mg/L   | [21]                    |  |
| MgO<br>nanoparticles                                  | UV light      | 30 mL              | 50 mg              | methylene blue                                                                                             | 1.8 mg/L        | [22]                    |  |

## Table S2. Comparison of different types of MgO in degradation of organic dyes

| Mg/Zn oxides                          | specific surface<br>area <sup>a</sup> (m <sup>2</sup> g <sup>-1</sup> ) | average pore<br>diameter <sup>b</sup> (nm) | pore volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) | crystallite<br>size <sup>c</sup> (nm) | band gap<br>energy <sup>d</sup> (eV) |
|---------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|---------------------------------------|--------------------------------------|
| MgO                                   | 127.6                                                                   | 13.6                                       | 0.48                                              | 8.80                                  | 5.24                                 |
| Mg <sub>0.9</sub> Zn <sub>0.1</sub> O | 108.3                                                                   | 11.0                                       | 0.31                                              | 8.50                                  | 3.40                                 |
| Mg <sub>0.8</sub> Zn <sub>0.2</sub> O | 26.5                                                                    | 34.2                                       | 0.21                                              | 4.27                                  | 3.34                                 |
| Mg <sub>0.7</sub> Zn <sub>0.3</sub> O | 29.9                                                                    | 25.7                                       | 0.20                                              | 3.78                                  | 3.34                                 |
| Mg <sub>0.5</sub> Zn <sub>0.5</sub> O | 27.8                                                                    | 27.4                                       | 0.17                                              | 3.63                                  | 3.37                                 |
| Mg <sub>0.2</sub> Zn <sub>0.8</sub> O | 30.5                                                                    | 15.2                                       | 0.11                                              | 2.62                                  | 3.32                                 |
| ZnO                                   | 15.6                                                                    | 17.7                                       | 0.05                                              | 3.96                                  | 3.24                                 |

Table S3. Texture properties of different Mg/Zn binary oxides

*Note*: <sup>*a*</sup> Using the standard Brunauer–Emmett–Teller (BET) method. <sup>*b*</sup> Using the Barret– Joyner–Halenda (BJH) method. <sup>*c*</sup> Using the Debye–Scherrer formula based on the full width at half-maximum (fwhm) of the (200) plane. <sup>*d*</sup> Estimated from UV diffused reflectance spectroscopy (DRS).

*Table S4.* The kinetic parameters of ZnO, MgO and Mg<sub>0.8</sub>Zn<sub>0.2</sub>O from their time profiles using the fitting line of Lorentzian function

| oxides                                | <b>y</b> 0 | А       | W     | $	au_0$ (ns) |
|---------------------------------------|------------|---------|-------|--------------|
| ZnO                                   | 0          | 68930.6 | 17.79 | 198.7        |
| MgO                                   | 0          | 59634.2 | 60.70 | 195.7        |
| Mg <sub>0.8</sub> Zn <sub>0.2</sub> O | 0          | 64184.1 | 64.80 | 193.6        |

Note: Lorentzian function is below.

$$y(t) = y_0 + \frac{2A}{\pi} \left[ \frac{W}{4(t - \tau_0)^2 + W^2} \right]$$

## References

- (1) M. Sangeeta, K. V. Karthi, R. Ravishankar, K. S. Anantharaju, H. Nagabhushana, K. Jeetendra, Y. S. Vidya and L. Renuka, *Mater. Today-Process.*, 2017, **4**, 11791-11798.
- (2) J. Lian, C. Zhang, Q. Li and D. H. L. Ng, *Nanoscale*, 2013, 5, 11672-11678.
- (3) M. Boshta, M. O. Abou-Helal, D. Ghoneim, N. A. Mohsen and R. A. Zaghlool, *Surf. Coat. Technol.*, 2010, **205**, 271-274.
- (4) X. Xiang, L. S. Xie, Z. W. Li and F. Li, Chem. Eng. J., 2013, 221, 222-229.

- (5) A. I. Vaizogullar, *Kinet. Catal.*, 2018, **59**, 418-427.
- (6) T. B. Ivetić, M. R. Dimitrievska, N. L. Finčur, L. R. Đačanin, I. O. Gúth, B. F. Abramović and S. R. Lukić-Petrović, *Ceram. Int.*, 2014, **40**, 1545-1552.
- (7) A. Sierra-Fernandez, S. C. De la Rosa-Garcia, L. S. Gomez-Villalba, S. Gomez-Cornelio, M. E. Rabanal, R. Fort and P. Quintana, ACS Appl. Mater. Inter., 2017, 9, 24873-24886.
- (8) X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun and G. Li, J. Phys. Chem. C, 2008, 112, 12242-12248.
- (9) S. Klubnuan, P. Amornpitoksuk and S. Suwanboon, Mater. Sci. Semicond. Process., 2015, 39, 515-520.
- (10) M. A. Karimi, A. Hatefi-Mehrjardi, A. A. Kabir and M. Zaydabadi, *Res. Chem. Intermed.*, 2015, **41**, 6157-6168.
- (11) V. Etacheri, R. Roshan and V. Kumar, ACS Appl. Mater. Interfaces, 2012, 4, 2717-2725.
- (12) S. Suwanboon, P. Amornpitoksuk, P. Bangrak and N. Muensit, Ceram. Int., 2013, 39, 5597-5608.
- (13) Y. Zheng, L. Cao, G. Xing, Z. Bai, J. Huang and Z. Zhang, RSC Adv., 2019, 9, 7338-7348.
- (14) N. Salehifar, Z. Zarghami and M. Ramezani, Mater. Lett., 2016, 167, 226-229.
- (15) K. N. S. Kumara, H. P. Nagaswarupa, K. R. V. Mahesh, S. C. Prashantha, M. Mylarappa and D. M. K. Siddeshwara, *Nanosyst.-Phys. Chem. Math.*, 2016, **7**, 662-666.
- (16) K. Mageshwari, S. S. Mali, R. Sathyamoorthy and P. S. Patil, Powder Technol., 2013, 249, 456-462.
- (17) A. B. Gh, M. Sabbaghan and Z. Mirgani, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2015, **137**, 1286-1291.
- (18) R. Sathyamoorthy, K. Mageshwari, S. S. Mali, S. Priyadharshini and P. S. Patil, *Ceram. Int.*, 2013, **39**, 323-330.
- (19) A. Najafi, Ceram. Int., 2017, 43, 5813-5818.
- (20) M. Mantilaka, R. T. De Silva, S. P. Ratnayake, G. Amaratunga and K. M. N. de Silva, *Mater. Res. Bull.*, 2018, **99**, 204-210.
- (21) M. Y. Guo, A. M. C. Ng, F. Liu, A. B. Djurišić and W. K. Chan, Appl. Catal. B, 2011, 107, 150-157.
- (22) S. Demirci, B. Ozturk, S. Yildirim, F. Bakal, M. Erol, O. Sancakoglu, R. Yigit, E. Celik and T. Batar, *Mater. Sci. Semicond. Process*, 2015, **34**, 154-161.