Supporting Information

Oriented Assembly of Copper Metal-Organic Frameworks Membranes as Tandem Catalysts to Enhance C-H

Hydroxyalkynylation Reactions with Regiocontrol

Chao Huang,[†] Kaifang Zhu,[†] Guizhen Lu,[†] Yingying Zhang,[†] Dandan Wang,[†] Dianbo Zhang,[†] Liwei Mi,^{*,†} and Hongwei Hou^{*,‡}

[†]Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.

[‡]College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.

Contents

1.	General Method
2.	Synthesis
3.	Procedure for the 1 or 1a-catalyzed three-component C-H hydroxyalkynylation tandem
	reactions
4.	Crystal Data Collection and Refinement
5.	Additional structure figures and characterizations of Cu-complexes
6.	Optimization of reaction conditions for three-component C-H tandem
	hydroxyalkynylation reactions
7.	The change of 1a during the reaction process
8.	The direct C-H hydroxyalkynylation tandem reaction catalyzed by
	Cu(NO ₃) ₂ /H ₂ BBDC/azobpy or H ₂ BBDC/azobpy in H ₂ OS16
9.	Recycling test for acylation-Nazarov cyclization reaction catalyzed by 1aS18
10.	Spectral copies of ¹ H NMR of compounds obtained in this studyS19
11.	References

1. General Method. H₂BBDC (4'-benzoyl-(1,1'-biphenyl)-3.5-dicarboxylic acid) ligand was synthesized with the procedure modified from the literature.¹ Cu foam was treated by 2M HCl, and then dried under vacuum over overnight. Other reagents and solvents were supplied by commercially available and utilized as received without further purification. Powder X-ray diffraction (PXRD) patterns were collected with a PANalyticalX'Pert PRO diffractometer on monochromated Cu Ka1 radiation. Elemental analyses (C, H, and N) were recorded using a FLASH EA 1112 elemental analyzer. FT-IR spectra were tested on a Bruker-ALPHA spectrophotometer with KBr pellets in 400-4000 cm⁻¹ region. ¹H spectra were recorded with Bruker Avance-400 spectrometers. Inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses were carried out using a Thermo Scientic ICP 6000 spectrometry. The gas sorption isotherms of coordination polymers 1-1a was collected on a Micromeritics ASAP 2420 surface area and pore size analyzer under ultrahigh vacuum in a clean system, with a diaphragm and turbo pumping system. Ultrahigh-purity-grade (> 99.999%) N2 gas was applied in all adsorption measurements. The experimental temperature was maintained by liquid nitrogen (77 K). Prior to measurement, bulk sample of 1 was washed thoroughly with EtOH three times, and placed under vacuum. The samples were placed in a DB-80 simplex pump and purged 10 times with CO₂ about 30 min. After that period of time the pressure and temperature was raised over the arrest point of CO₂, forming supercritical CO₂ (SC-CO₂). The resulting SC-CO₂ in the column was gradually released within a time frame of 12 h.

2. Synthesis

Synthesis of [Cu(BBDC)(azobpy)(H₂O)]_{*n*} **(1).** H₂BBDC (0.05 mmol, 0.017 g), CuCN (0.2 mmol, 0.018 g), azobpy (0.03 mmol, 0.006g, azobpy = 4,4'-azopyridine), 3 mL DMF, 4 mL H₂O, and HNO₃ (3 drops) were placed in a bottle (10 mL). The bottle was heated at 100 °C for 2 days, the yellow green crystals of **1** were provided with 51 % yield (depended on Cu). Analysis calculated (%) for $C_{31}H_{22}CuN_4O_6$: C, 61.03 %; H, 3.63 %; N, 9.18 %. Found: C, 61.05 %; H, 3.59 %; N, 9.22 %. IR: 3426 (s), 2930 (vw), 1605 (vs), 1510 (vw), 1472 (m), 1386 (vs), 1293 (w), 1127 (m), 1023 (vw), 919 (vw), 845 (w), 780 (m), 726 (w).

Synthesis of MOFs-based membranes 1a on Cu foam. In a typical synthesis, Cu foam and PVA poly(vinyl alcohol) (PVA, 1788, 0.1 g) were mixed in 1 mL DMF and sonicated for 30 min in a 10 mL vial. Then the solution of CuCN (0.2 mmol, 0.018 g, 1 mL) was added into the above solution and sonicated for 20 min. Subsequently, the H₂BBDC (0.05 mmol, 0.017 g), azobpy (0.03 mmol, 0.006 g), and HNO₃ (3 drops) in 1 mL DMF and 4 mL H₂O were added and further sonicated for 30 min. Finally, the mixture solution in the bottle heated at 100 °C for 2 days. The Cu foam was extracted, washed (H₂O and EtOH), and dried under vacuum oven overnight.

3. Procedure for the 1 or 1a-catalyzed three-component C-H hydroxyalkynylation tandem reactions.

General procedure for the 1a-catalyzed three-component C-H hydroxyalkynylation tandem reactions. To a mixture of H₂O (2 mL), acetone (2 mL) and acetonitrile (2 mL) in a seal tube was added naphthoquinone (2, 1.0 mmol), $(NH_4)_2S_2O_8$ (2.0 mmol), alkenes (3a-g, 2.0 mmol), and catalysts 1a (0.1 mmol, 0.1 equiv based on copper ions) at room temperature. Then, the mixture was heated at 110 °C for 4 h. The reactions were cooled to room temperature and extracted with ethyl acetate. Organic layers were combined, dried with MgSO₄, and concentrated under reduced pressure to remove the solvent. The residue was purified by flash chromatography using ethyl acetate/petroleum ether as eluent to provide the desired products.

2-(2-Hydroxy-1-phenylethyl)naphthalene-1,4-dione. After column chromatography (PE/EtOAc = 4/1) 253 mg (91%) of a light yellow oil were obtained. This compound had been reported.² ¹H NMR (400 MHz, CDCl₃) δ : 8.03-8.10 (m, 2H), 7.70-7.74 (m, 2H), 7.30-7.36 (m, 4H), 6.93 (d, *J* = 1.0 Hz, 1H), 4.57 (t, *J* = 4.0 Hz, 1H), 4.13 (d, *J* = 8.0 Hz, 2H), 1.65 (s, 1H).

2-(2-Hydroxy-1-(p-tolyl)ethyl)naphthalene-1,4-dione. After column chromatography (PE/EtOAc = 4/1) 264.8 mg (91%) of a light yellow oil were obtained. This compound had been reported.^{2 1}H NMR (400 MHz, CDCl₃) δ : 8.03-8.11 (m, 2H), 7.64-7.77 (m, 2H), 7.12-7.22 (m, 4H), 6.92 (d, *J* = 8.0 Hz, 1H), 4.53 (t, *J* = 4.0 Hz, 1H), 4.10 (d, *J* = 1.0 Hz, 2H), 2.32 (s, 1H), 1.83 (s, 1H).

2-(1-(4-Chlorophenyl)-2-hydroxyethyl)naphthalene-1,4-dione. After column chromatography (PE/EtOAc = 3/1) 277.7 mg (89%) of a light yellow oil were obtained. This compound had been reported.² ¹H NMR (400 MHz, CDCl₃) δ : 8.02-8.07 (m, 2H), 7.68-7.76 (m, 2H), 7.27-7.33 (m, 4H), 6.91 (d, *J* = 1.0 Hz, 1H), 4.52 (t, *J* = 4.0 Hz, 1H), 4.09-4.12 (m, 2H), 1.80 (s, 1H).

2-(1-(4-Fluorophenyl)-2-hydroxyethyl)naphthalene-1,4-dione. After column chromatography (PE/EtOAc = 3/1) 260.5 mg (88%) of a light yellow oil were obtained. This compound had been reported.^{2 1}H NMR (400 MHz, CDCl₃) δ : 7.99-8.06 (m, 2H), 7.68-7.76 (m, 2H), 7.28-7.32 (m, 2H), 7.00-7.05 (m, 2H), 6.90 (d, *J* = 1.0 Hz, 1H), 4.54 (t, *J* = 4.0 Hz, 1H), 4.06-4.13 (m, 2H), 1.85 (s, 1H).

2-(2-Hydroxy-1-(m-tolyl)ethyl)naphthalene-1,4-dione. After column chromatography (PE/EtOAc = 5/1) 257 mg (88%) of a light yellow oil were obtained. This compound had been reported.² ¹H NMR (400 MHz, CDCl₃) δ : 8.09-8.03 (m, 2H), 7.74-7.69 (m, 2H), 7.25-7.21 (m, 1H), 7.14-7.10 (m, 2H), 7.08 (d, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 1.0 Hz, 1H), 4.53 (t, *J* = 8.0 Hz, 1H), 4.10 (d, *J* = 8.0 Hz, 2H), 2.32 (s, 3H), 1.69 (s, 1H).

2-(1-(3-Bromophenyl)-2-hydroxyethyl)naphthalene-1,4-dione. After column chromatography (PE/EtOAc = 4/1) 306.2 mg (86%) of a light yellow oil were obtained. This compound had been reported.² ¹H NMR (400 MHz, CDCl₃) δ : 8.08-8.03 (m, 2H), 7.75-7.70 (m, 2H), 7.46 (t, *J* = 4.0 Hz, 1H), 7.41-7.38 (m, 1H), 7.29-7.27 (m, 1H), 7.21 (t, *J* = 4.0 Hz, 1H), 6.92 (d, *J* = 1.0 Hz, 1H), 4.52 (t, *J* = 8.0 Hz, 1H), 4.14-4.07 (m, 2H), 1.82 (s, 1H).

2-(1-(2-Bromophenyl)-2-hydroxyethyl)naphthalene-1,4-dione. After column chromatography (PE/EtOAc = 4/1) 306.2 mg (86%) of a light yellow oil were obtained. This compound had been reported.² ¹H NMR (400 MHz, CDCl₃) δ: 8.07-8.11 (m, 1H), 8.04-8.06 (m, 1H), 7.71-7.74 (m, 2H), 7.59-7.62 (m, 1H), 7.40-7.42 (m, 1H), 7.30-7.42 (m, 1H), 7.13-7.18 (m, 1H), 6.75 (s, 1H), 4.98 (t, *J* = 4.0 Hz, 1H),4.10-4.14 (m, 2H), 1.83 (s, 1H).

4. Crystal Data Collection and Refinement. The data of **1** was tested on a Bruker D8 VENTURE diffractometer (Mo- $K\alpha$, $\lambda = 0.71073$ Å). The integration of the diffraction data, as well as the intensity corrections for the Lorentz and polarization effects, were performed using the SAINT program.³ SADABS program was used to performed the semiempirical absorption correction.⁴ The structure was solved by immediate methods and refined with a fullmatrix least-squares technique depended on F² with the SHELXL crystallographic software package.⁵ All H atoms expect for those of H₂O molecules were defined at calculated positions and refined isotropic displacement parameters with riding model. Crystallographic data for **1** have been deposited at the Cambridge Crystallographic Data Centre with CCDC reference number 1953571.

Complex	1	1 in $(NH_4)_2S_2O_8$ solution
Formula	$C_{31}H_{22}CuN_4O_6$	$C_{31}H_{22}CuN_4O_6$
fw	610.07	610.07
T/K	293(2)	293(2)
λ (Mo K), Å	0.71073	0.71073
Crystsyst	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_l/c$
a (Å)	11.8376(2)	11.8362(4)
b (Å)	19.0862(4)	19.8015(8)
c (Å)	11.5994(3)	11.5974(4)
β(°)	93.465(10)	93.475(2)
V (Å ³)	2714.6.4(10)	2713.14(17)
Ζ	4	
$D_{\text{calcd}}(g \cdot \text{cm}^{-3})$	1.493	
Reflections collected /unique	30714 / 5032	
abs coeff/mm ⁻¹	0.858	
F(000)	1252	
heta (°)	2.60-25.50	
GOF	1.054	
$R_I(I>2sigma(I))^a$	0.0697	
$wR_2(I>2sigma(I))^b$	0.1191	

Table S1. Crystallographic data and structure refinement details for complex1^{a,b}

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| \sum / |F_{o}| \cdot {}^{b}wR_{2} = \left[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}\right]^{1/2}.$

Complex 1				
Cu(1)-O(2)#1	1.951(3)	Cu(1)-N(1)	2.028(4)	
Cu(1)-O(5)	1.997(3)	Cu(1)-N(4)	2.033(4)	
Cu(1)-O(6)	2.291(3)	O(5)-Cu(1)-N(1)	89.40(17)	
O(2)#1-Cu(1)-O(5)	163.65(15)	O(5)-Cu(1)-N(4)	88.16(16)	
O(2)#1-Cu(1)-O(6)	101.03(14)	N(1)-Cu(1)-O(6)	94.75(17)	
O(2)#1-Cu(1)-N(1)	90.03(17)	N(1)-Cu(1)- N(4)	174.94(18)	
O(2)#1-Cu(1)-N(4)	91.06(16)	N(4)-Cu(1)-O(6)	89.89(16)	
O(5)-Cu(1)-O(6)	9530(14)			
Symmetry codes: $\#1 = 1-x$, $1/2+y$, $3/2-z$				

Table S2. Selected Bond Lengths (Å) and Bond Angles (deg) for 1.

Figure S1. Crystal structure of 1: (a) The TG curve of 1. (b) PXRD patterns of 1. (c) Coordination environments of the Cu^{II} ions. Hydrogen atoms are omitted for clarity. (d) The XPS of O atom in 1. (e) The monodetate coordination mode to connect the Cu ions, producing a 1D chain structure. (f) Rhombus windows of 1. (g) The $\pi \cdots \pi$ interactions between the adjacent carbxoyl benzene.

Figure S2. MOF-based membranes of **1a**: (a, b) SEM images of MOFs-based membranes **1a** on Cu foam with various magnifications. (c) Surface SEM images of membranes **1a** on Cu foam with various magnifications. (d) Elemental mappings of the related elements (Cu, O, N, and C) in **1a**. (e) PXRD patterns of **1a**.

Figure S3. The influence of PVA on Cu foam: (a) SEM image of Cu foam in PVA after reaction 2 days under 100 °C. (b) SEM image of Cu foam in PVA/CuCN after reaction 2 days under 100 °C. (c) Elemental mappings of the related elements (Cu, O, N, and C) on Cu foam in PVA/CuCN after reaction 2 days under 100 °C. (d) SEM image of Cu foam in CuCN/Cu foam after reaction 2 days under 100 °C.

Figure S4. MOF-based membranes of 1a: (a, b) N_2 adsorption isotherm of 1 and 1a at 77 K. (c) SEM images of MOFs-based membranes 1a on Cu foam with PVA was 0.05 g. (d) SEM images of MOFs-based membranes 1a on Cu foam with PVA was 0.15 g. (e) SEM images of MOFs-based membranes 1a on Cu foam with PVA was 0.20 g. (f) SEM images of MOFs-based membranes 1a on Cu foam with PVA was 0.30 g.

Figure S5. (a, b) The samples of 1 in H₂O/acetone/CH₃CN and $(NH_4)_2S_2O_8$ aqueous solution after 24 h, respectively. (c, d) SEM images of MOFs-based membranes 1a in H₂O/acetone/CH₃CN and $(NH_4)_2S_2O_8$ aqueous solution after 24 h, respectively. (e) PXRD patterns of 1 and 1a in H₂O/acetone/CH₃CN and $(NH_4)_2S_2O_8$ aqueous solution after 24 h, respectively.

6. Optimization of reaction conditions for three-component C-H tandem hydroxyalkynylation reactions

Table S3. Optimization of reaction conditions for synthesizing of hydroxyalkynylation naphthoquinones skeletons via tandem reactions.^[a]

ĺ		$\begin{array}{c} & \text{Cata} \\ & \\ & + H_2 O \\ & \frac{(l)}{acet} \\ & 110 \end{array}$	alyst (0.1 mmol) $NH_4)_2S_2O_8$ $rone/CH_3CN$ °C, 4h, 95 %	OH OH
	2 3a	l		4a
Entry	Catalyst (mmol)	Temperature/° C	Solvent	Yield (%) of 4a ^[b]
1	1a (0.1)	110	CH ₃ CN	41
2	1a (0.1)	110	acetone	46
3	1a (0.1)	110	THF	31
4	1a (0.1)	110	DCE	n.o. ^[c]
5	1a (0.1)	110	CHCl ₃	n.o. ^[c]
6	1a (0.1)	110	Et ₂ O	36
7	1a (0.1)	110	DCM	n.o. ^[c]
8	1a (0.1)	110	acetone/CH ₃ CN	91
9	1a (0.01)	110	acetone/CH ₃ CN	47
10	1a (0.05)	110	acetone/CH ₃ CN	71
11	1a (0.15)	110	acetone/CH ₃ CN	94
12	1a (0.20)	110	acetone/CH ₃ CN	97
13	1a (0.1)	25	acetone/CH ₃ CN	< 10
14	1a (0.1)	60	acetone/CH ₃ CN	21
15	1 (0.1)	110	acetone/CH ₃ CN	62
16	Cu(NO ₃) ₂	110	acetone/CH ₃ CN	23
17	Cu foam (0.1)	110	acetone/CH ₃ CN	n.o.

^aReaction conditions: naphthoquinone (1.0 mmol), styrene (2.0 mmol), catalyst (0.10 mmol), $(NH_4)_2S_2O_8$ (2.0 mmol), H_2O (2 mL), acetone (2 mL) and acetonitrile (2 mL), 110 °C (4h). ^bIsolated yield of the product after 4h. ^cNot observed = n.o.

7. The change of 1a during the reaction process

Figure S6. XPS spectrums of Cu-MOF membranes 1a during the reaction process (0, 1, and 4 h).

8. The direct C-H hydroxyalkynylation tandem reaction catalyzed by Cu(NO₃)₂/H₂BBDC/azobpy or H₂BBDC/azobpy in H₂O.

Table S4. The direct C-H hydroxyalkynylation tandem reaction catalyzed by $Cu(NO_3)_2/H_2BBDC/azobpy$ or $H_2BBDC/azobpy$ in $H_2O.^a$

Entry	Catalysts	Alkene	Yield %
Enuy			of 4a-i ^b
	Cu(NO ₃) ₂ /		
1	H ₂ BBDC/		45
	azobpy		
2	1 a	3a	91
2	H ₂ BBDC/		no¢
5	azobpy		11.0.*
	Cu(NO ₃) ₂ /		
4	H ₂ BBDC/		45
	azobpy		
5	1a	3b	91
6	H ₂ BBDC/		no
0	azobpy		11.0.
	$Cu(NO_3)_2/$		
7	H ₂ BBDC/		41
	azobpy	cı—	
8	1 a	3c	89
9	H ₂ BBDC/		no
,	azobpy		11.0.
	$Cu(NO_3)_2/$		
10	H ₂ BBDC/		39
	azobpy	F-	
11	1 a	3d	88
12	H ₂ BBDC/		no
	azobpy		
	$Cu(NO_3)_2/$		
13	H ₂ BBDC/		37
	azobpy	3e	
14	1a		88

S16

^aReaction conditions: naphthoquinone (1.0 mmol), alkenes (**3a-g**, 2.0 mmol), catalyst (0.10 mmol), $(NH_4)_2S_2O_8$ (2.0 mmol), H_2O (2 mL), acetone (2 mL) and acetonitrile (2 mL), 110 °C (4h). ^bIsolated yield of the product after 4h. ^cNot observed = n.o.

9. Recycling test for the direct C-H hydroxyalkynylation tandem reaction catalyzed by 1a.

Figure S7. (a) Recycling test for the direct C-H hydroxyalkynylation tandem reaction catalyzed by **1a**. (b) Comparison of the PXRD patterns of **1a** before and after catalysis.

10. Spectral copies of ¹H NMR of compounds obtained in this study.

S21

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

11. References.

(1) W. Sharamoukh, K. C. Ko, C. Noh, J. Y. Lee and S. U. Son, *J. Org. Chem.*, 2010, **75**, 6708-6711.

(2) L. Cao, H. Long, H. Guan, Y. Bi, G. Bi, H. Huang and L. Liu, *Tetrahedron Lett.*, 2019, **60**, 1268-1271.

(3) SAINT, Program for Data Extraction and Reduction; Bruker AXS, Inc: Madison, WI, 2001.

(4) Sheldrick, G. M. SADABS, Program for Empirical Adsorption Correction of Area Detector Data; University of Göttingen: Germany, **2003**.

(5) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr.2008, 64, 112–122.