Supporting information

Solution chemistry and phase solubility diagram of CL-20/MTNP

energetic cocrystal

Table of contents

Section 1: Solubilities of CL-20/MTNP and its components

Section 2: Calculations of eutectic constants

Section 3: Characterizations

Section 1:Solubilities determinations:

The solubilities of CL-20, MTNP and CL-20/MTNP co-crystal were determined by HPLC measurements in ethanol, ethyl acetate and acetonitrile. The solubilities of CL-20, MTNP and cocrystal were modeled by the Apelblat equation and the curves were shown in figure 1 (a) to (c) respectively. Every examining point was determined by three parallel samples so that these solubilities were given with error bars in figure 1.

The modified Apelblat models derived from Clausius-Claperyron equation can be utilized to describe the trends of solubility as the equation would be given :

$$lnx = A_1 + \frac{B_1}{T} + c_1 lnT$$
(T/K) (1)

Where the x refers to the mole fraction solubility of CL-20 or MTNP; The solubilities x were given in mol/L. The $A_{1,}B_{1,}C_{1}$ were all empirical parameters and can be acquired through the calculation of a non-liner least-square method. $A_{1,} B_{1}$ gave a quantification of the variation of the activity coefficient and the solubility of solute in a non-ideal solution respectively while the effect of temperature on fusion enthalpy can be indicated via C1.

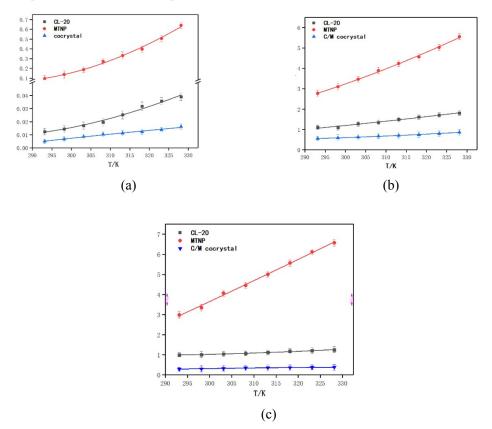


Figure 1 (a) to (c) exhibited the solubilities and solubility curves modeled by Apelblat equation in three

solvents for CL-20, MTNP and CL-20/MTNP cocrystal in each fiure.

The concentrations of sample 1,2,3 in figure 1 were actually the same with samples in figure 2. The differences are the x-axis in figure 2 were the reciprocal of MTNP concentrations (1/[MTNP]total). The various concentrations of MTNP were controlled and these correspond CL-20 concentrations were determined by HPLC as below. The samples were taken for 1ml to HPLC analysis. And these correspond CL-20 concentrations were determined by HPLC as below. Concentration order 1 to 4 are the test points in 'figure 1(a) to (c)'.

Table 1. Exhibits the various concentrations of CL-20 (mol/L) at different concentrations of MTNP (mol/L) in ethanol (EtoH) at 308.15K.

Concentration	MTNP	CL-20	MTNP	CL-20	MTNP	CL-20
order	(sample1)	(sample1)	(sample 2)	(sample 2)	(sample 3)	(sample 3)
1	0.00917	0.00836	0.00904	0.00925	0.00872	0.00885
2	0.01272	0.00667	0.0135	0.00606	0.01243	0.00552
3	0.02408	0.00347	0.0272	0.0037	0.0258	0.0035
4	0.0317	0.00272	0.03301	0.00299	0.03091	0.00262

Table 2. Exhibits the various concentrations of CL-20 (mol/L) at different concentrations of

Concentration	MTNP	CL-20	MTNP	CL-20	MTNP	CL-20
order	(sample1)	(sample1)	(sample 2)	(sample 2)	(sample 3)	(sample 3)
1	0.35192	0.35081	0.35249	0.37012	0.35916	0.31204
2	0.66	0.16515	0.6769	0.19986	0.64822	0.16943
3	0.99	0.1101	0.9855	0.12915	1.01497	0.13525
4	1.32	0.08258	1.30565	0.10772	1.33958	0.09243

MTNP (mol/L) in ethyl acetate (EtoAc) 308.15K

Table 3. Exhibits the various concentrations of CL-20 (mol/L) at different concentrations of

Concentration	MTNP	CL-20	MTNP	CL-20	MTNP	CL-20
order	(sample1)	(sample1)	(sample 2)	(sample 2)	(sample 3)	(sample 3)
1	0.57857	0.58771	0.60566	0.5911	0.56566	0.54577
2	1.17	0.28889	1.12902	0.31299	1.198	0.25689
3	1.73595	0.17259	1.78255	0.19259	1.755	0.19259
4	2.314	0.14971	2.294	0.1551	2.35322	0.13914

MTNP (mol/L) in acetonitrile (AN) 308.15K.

Section 2:Calculated eutectic constants:

In order to calculate the eutectic constants for CL-20/MTNP co-crystal, the general equations of co-crystal dissolution process are necessary to discuss here. Drug A and cocrystal A_xB_y , equations and definitions of equilibrium constants can be given as equation (2) to (4), Where the $[A]_{eu}$ and $[B]_{eu}$ stands for the total concentrations in equilibrium condition at eutectic points with solutions³ :

$$A_{solid} \leftrightarrow A_{soln}$$
 $S_{drug} = a_{drug}$ (2)

$$A_x B_{ysolid} \leftrightarrow x A_{soln} + y B_{soln} \quad K_{sp} = a_{drug}^x a_{coformer}^y \tag{3}$$

$$A_{soln} + B_{soln} = AB_{soln} \qquad \qquad K_{11} = \frac{a_{complex}}{a_{drug}a_{coformer}}$$
(4)

Where slon stands for solute in solutions; K_{sp} and K_{11} are the solubility product constant and complexation constant in solution respectively.

While the [AB] soln can be expressed combining with K11, Ksp and Sdrug:

$$[AB]_{soln} = K_{11} (K_{sp} s_{drug}^{(y-x)})^{\frac{1}{y}}$$
(5)

The eutectic constant (Keu) is defined by the concentration ratio of conformer to drug:

$$K_{eu} = \frac{[B]_{eu}}{[A]_{eu}} = \frac{[B] + [AB]}{[A] + [AB]}$$
$$= \left[\frac{\left(\frac{K_{sp}}{S_{drug}^{x}}\right)^{\frac{1}{y}} + K_{11}\left(K_{sp}S_{drug}^{y-x}\right)^{\frac{1}{y}}}{S_{drug} + K_{11}\left(K_{sp}S_{drug}^{y-x}\right)^{\frac{1}{y}}}\right]$$

(6)

The cocrystal to drug solubility ratio is used to determine the eutectic constants and defined

as:

$$\alpha = \frac{S_{co-crystal}}{S_d} \tag{7}$$

Base on equations (1) to (3), another calculation of K_{eu1} via the solubility ratio of co-crystal and CL-20 in pure solvents can be shown as :

$$K_{eu1} = x y^{y/x} \alpha^{(y+x)/x}$$
(8)

While for 1:1 co-crystal, the co-crystal to CL-20 solubility ratio (α) is shown to determine the excess eutectic co-former concentration and the eutectic constant (K_{eu}), which is the ratio of solution concentrations of co-crystal components at the eutectic. Equation (8) also can be simplified as equation (9) below, by which the calculated K_{eu1} thus we can make comparisons about the calculative and observed K_{eu} values in Table 3:

$$K_{eu1} = \left(\frac{S_{co-crystal}}{S_d}\right)^2 = \alpha^2$$
(9)

Base on equation (9), the $K_{eul}(c)$ can be obtained from the solubilities that were determined previously.

:

Section 3: Characterization

The simulated PXRD patterns of CL-20/MTNP cocrystal was given here as comparisons with the experimental PXRD patterns in figure 2.

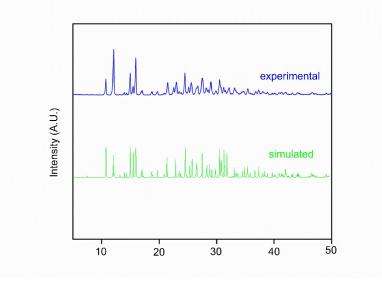


Figure 2. The experimental and simulated PXRD patterns of CL-20/MTNP cocrystal

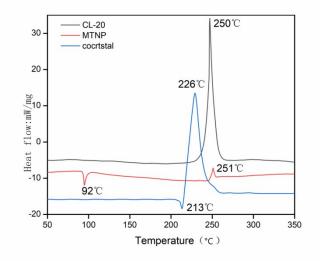


Figure 3. The results of DSC analysis of CL-20/MTNP cocrystal

The thermal analysis of CL-20/MTNP showed the melting point of this cocrystal was improved to be 213°C comparing with 92°C of MTNP. While exothermic decomposition peak was 226°C, lower than 250°C for CL-20 and 251°C for MTNP.

- 1. A. Alhalaweh, A. Sokolowski, N. Rodriguezhornedo and S. P. Velaga, Crystal Growth & Design, 2011, 11, 3923-3929.
- 2. S. J. Nehm, B. Rodriguezspong and N. Rodriguezhornedo, Crystal Growth & Design, 2006, 6, 592-600.
- 3. D. J. Good and N. Rodriguezhornedo, Crystal Growth & Design, 2010, 10, 1028-1032.